Ultra-Light, inTegrated, Reliable, Aviation-class, Co-Optimized Motor & Power converter with Advanced Cooling Technology (ULTRA-COMPACT)

Default ARPA-E Project Image

East Hartford, Connecticut
Project Term:
05/01/2021 - 05/09/2026

Technology Description:

Small regional aircraft operations are challenged by high fuel cost, noise restrictions associated with small regional airports, and high maintenance cost of twin gas turbines. A battery/gas turbine hybrid series small regional aircraft, enabled by ULTRA COMPACT driven propulsors, addresses these issues, and could reduce passenger mile energy consumption. The Raytheon Technologies Research Center proposes ULTRA-COMPACT to improve the electric-to-shaft power electric drive train and demonstrate feasibility of a turbo-electric distributed propulsion-based electrified aircraft propulsion (EAP) system. The ULTRA-COMPACT electric propulsion system leverages: (1) a novel high-speed permanent magnet machine, (2) a series-parallel, multi-level silicon carbide (SiC) based motor drive topology, (3) a high-power density gearbox using lightweight composite, and (4) an integrated and actively controlled thermal management system that provides coolant directly to the motor, gearbox and power converter.

Potential Impact:

The ASCEND program has the potential to accelerate innovations and cause disruptive changes in the emerging electric aviation field.


The program will further enhance U.S. technology dominance in the field of high-performance electric motors for hybrid electric aviation. Electrified aircraft architectures can increase reliability by increasing redundancy.


An all-electric propulsion system operating on CNLF would have net-zero emissions and be much quieter for passengers and people in the vicinity of airports.


By targeting propulsion system efficiency and specific power improvements, CNLF-powered, zero-net emission aircraft will be capable of a longer range and reduced fuel cost, making them economically more attractive.


ARPA-E Program Director:
Dr. Peter de Bock
Project Contact:
Dr. Jagadeesh Tangudu
Press and General Inquiries Email:
Project Contact Email:


Collins Aerospace
SUNY University at Buffalo
Virginia Polytechnic Institute and State University
Ames National Laboratory
Purdue University

Related Projects

Release Date: