Transformation of Carbon Emissions to High-Value Products through a Two-Step Electrochemical Platform

ARPA-E Project Image


Program:
Special Projects
Award:
$500,000
Location:
Newark,
Delaware
Status:
ACTIVE
Project Term:
04/02/2020 - 04/01/2022

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

Carbon dioxide utilization can help reduce carbon emissions, but gaps remain in the value chain from initial capture to high-value products. Lectrolyst LLC will develop an electrochemical platform centered on selective two-step conversion of CO2 to acetic acid and ethylene, to fill this need. Preliminary life cycle assessment and techno-economic analysis indicate ~200 million metric tons of CO2 emissions reduction when targeting these products at global scale while competing on a cost basis without considering carbon pricing. Development of this platform is intended to lead to full commercialization.

Contact

ARPA-E Program Director:
Dr. Jack Lewnard
Project Contact:
Dr. Gregory Hutchings
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
greg@lectrolyst.com

Related Projects


Release Date:
05/20/2020