OPEN 2009
Columbus, Ohio
Project Term:
04/01/2010 - 09/30/2014

Technology Description:

The Ohio State University has developed an iron-based material and process for converting syngas—a synthetic gas mixture—into electricity, H2, and/or liquid fuel with zero CO2 emissions. Traditional carbon capture methods use chemical solvents or special membranes to separate CO2 from the gas exhaust from coal-fired power plants. Ohio State's technology uses an iron-based oxygen carrier to generate CO2 and H2 from syngas in separate, pure product streams by means of a circulating bed reactor configuration. The end products of the system are H2, electricity, and/or liquid fuel, all of which are useful sources of power that can come from coal or syngas derived from biomass. Ohio State is developing a high-pressure pilot-scale unit to demonstrate this process at the National Carbon Capture Center.

Potential Impact:

If successful, Ohio State's chemical looping process would enable significant reductions in greenhouse gas emissions while helping position the U.S. as the leader in advanced carbon capture technologies.


Enabling continued use of domestic coal for electricity generation will preserve the stability of the electric grid.


Carbon capture technology could prevent more than 800 million tons of CO2 from being emitted into the atmosphere each year.


Improving the cost-effectiveness of carbon capture methods will minimize added costs to homeowners and businesses using electricity generated by coal-fired power plants for the foreseeable future.


ARPA-E Program Director:
Dr. Eric Rohlfing
Project Contact:
Prof. Liang-Shih Fan
Press and General Inquiries Email:
Project Contact Email:


Clear Skies Consulting
CONSOL Energy, Inc.

Related Projects

Release Date: