Maximizing Carbon Negativity in Next Generation Bamboo Framing Materials

Default ARPA-E Project Image

Ocala, Florida
Project Term:
01/09/2023 - 04/08/2025

Technology Description:

BamCore aims to transition its bamboo/wood hybrid dual panel hollow wall system to primarily bamboo content to develop a prefabricated, building code-compliant vertical framing wall system for constructing carbon-negative low- and mid-rise buildings. BamCore will (1) replace high embodied carbon insulation with carbon negative insulation (2) maximize fiber utilization for more efficient sequestration-to-storage ratio and less waste, (3) replace the wood panel core with a bamboo or fast growing agricultural alternative, (4) achieve high fire rating without high embodied carbon gypsum board, and (5) advance end of life uses for the material. The result is a substantially more carbon-negative building material than wood with superior performance, lower overall cost, and high end-of-life value.

Potential Impact:

HESTIA projects will facilitate the use of carbon storing materials in building construction to achieve net carbon negativity by optimizing material chemistries and matrices, manufacturing, and whole-building designs in a cost-effective manner.


HESTIA technologies will reduce the carbon footprint of the built environment.


Building materials and designs developed under HESTIA will draw down and store CO2 from the atmosphere.


A variety of promising carbon storing materials are being explored and commercialized for building construction. Currently these materials are generally scarcer, cost more per unit, and/or face performance challenges (e.g., flame resistance for biogenic carbon-containing materials). HESTIA seeks technologies that overcome these barriers while nullifying associated emissions and increasing the total amount of carbon stored in the finished product.


ARPA-E Program Director:
Dr. Laurent Pilon
Project Contact:
Nicholas Allan
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: