Low-Cost Silicon Wafers for Solar Modules

Default ARPA-E Project Image

OPEN 2012
Santa Clara, California
Project Term:
06/01/2013 - 09/30/2016

Technology Description:

Applied Materials is working with ARPA-E and the Office of Energy Efficiency and Renewable Energy (EERE) to build a reactor that produces the silicon wafers used in solar panels at a dramatically lower cost than existing technologies. Current wafer production processes are time consuming and expensive, requiring the use of high temperatures to produce ingots from molten silicon that can be sliced into wafers for use in solar cells. This slicing process results in significant silicon waste—or “kerf loss”—much like how sawdust is created when sawing wood. With funding from ARPA-E, Applied Materials is developing a reactor where ultra-thin silicon wafers are created by depositing silicon directly from vapor onto specialized reusable surfaces, allowing a significant reduction in the amount of silicon used in the process. Since high purity silicon is one of the most significant costs in producing solar cells, this kerf-less approach could significantly reduce the overall cost of producing solar panels. Applied Materials is partnering with Suniva, who will use funds from EERE to integrate these low-cost wafers into solar cells and modules that generate low-cost electricity, and with Arizona State University, who will develop high-efficiency devices on ultra-thin kerfless substrates. This partnership could enable low-cost, domestic manufacturing of solar modules, allowing the U.S. to reduce the amount of equipment we import from other countries.

Potential Impact:

If successful, Applied Materials’ kerfless reactor would significantly reduce the cost of producing silicon wafers for solar cells and modules, resulting in low-cost renewable power generation for the grid.


Cost-effective solar energy would increase U.S. renewable energy use and help reduce our dependence on fossil fuels.


Replacing energy systems powered by fossil fuels with cost-effective renewable energy would provide an immediate decrease in greenhouse gas emissions, of which electricity generation accounts for over 40%.


Substantially lowering the production cost of silicon wafers would enable the U.S. to manufacture cost-effective solar energy systems at home, reducing our dependence on foreign countries for these technologies.


ARPA-E Program Director:
Dr. Ji-Cheng Zhao
Project Contact:
Ajey Joshi
Press and General Inquiries Email:
Project Contact Email:


Arizona State University

Related Projects

Release Date: