Liquid Fuel from Bacteria

Critical Need:
Domestic biofuels are an attractive alternative to petroleum-based transportation fuels. Biofuels are produced from plant matter, such as sugars, oils, and biomass. This plant matter is created by photosynthesis, a process that converts solar energy into stored chemical energy in plants. However, photosynthesis is an inefficient way to transfer energy from the sun to a plant and then to biofuel. Electrofuels—which bypass photosynthesis by using self-reliant microorganisms that can directly use the energy from electricity and chemical compounds to produce liquid fuels—are an innovative step forward.
Project Innovation + Advantages:
Massachusetts Institute of Technology (MIT) is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.
Potential Impact:
If successful, MIT would create a liquid transportation fuel that is cost competitive with traditional gasoline-based fuels and 10 times more efficient than existing biofuels.
Security:
Cost-competitive electrofuels would help reduce U.S. dependence on imported oil and increase the nation's energy security.
Environment:
Widespread use of electrofuels would help limit greenhouse gas emissions and reduce demands for land, water, and fertilizer traditionally required to produce biofuels.
Economy:
A domestic electrofuels industry could contribute tens of billions of dollars to the nation's economy. Widespread use of electrofuels could also help stabilize gasoline prices—saving drivers money at the pump.
Contact
ARPA-E Program Director:
Dr. Ramon Gonzalez
Project Contact:
Christopher J. Brigham
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
cbrigham@MIT.edu
Partners
Michigan State University
Related Projects
Release Date:
04/29/2010