Electromagnetic and Particle Diagnostics for Transformative Fusion-Energy Concepts

Default ARPA-E Project Image

Los Alamos, New Mexico
Project Term:
07/01/2020 - 09/30/2023

Critical Need:

Controlled fusion has long been thought of as an ideal energy source—safe, clean, abundant, and dispatchable. Fusion is on the cusp of demonstrating net positive energy gain, spurring interest in both the public and private sectors to adopt a more aggressive development path toward a timely, grid-ready demonstration. A critical need today is to increase the performance levels and the number of lower-cost fusion approaches that might eventually lead to commercial fusion energy with competitive capital cost and levelized cost of energy. To address this need, the BETHE program supports (1) advancing the performance of earlier-stage, lower-cost concepts, (2) component-technology development to lower the cost of more-mature concepts, and (3) capability teams to assist multiple concept teams in theory, modeling, and diagnostic measurements.

Project Innovation + Advantages:

Los Alamos National Laboratory and its partner, the University of Nevada-Reno, will provide visible spectroscopy and soft x-ray imaging diagnostics to characterize the performance of a number of lower-cost, potentially transformative fusion-energy concepts. Multi-chord visible spectroscopy measurements will enable the identification of impurities and their spatial and temporal variation in the plasmas, which is essential for understanding plasma composition and plasma conditions. A state-of-the-art, solid-state X-ray imager, the Adaptive Gain Integrating Pixel Detector (AGIPD), will be used to make soft x-ray movies of the hot plasma core, enabling visualization of the evolution of instabilities of all but the shortest duration plasmas.

Potential Impact:

Accelerating and lowering the costs of fusion development and eventual deployment will enable fusion energy to contribute to:


Fusion energy will ensure the U.S.’s technological lead and energy security.


Fusion energy will improve our chances of meeting growing global clean-energy demand and realizing cost-effective, net-zero carbon emissions, while minimizing pollution and avoiding long-lived radioactive waste.


As a disruptive technology, fusion energy will likely create new markets, opportunities, and export advantages for the U.S.


ARPA-E Program Director:
Dr. Robert Ledoux
Project Contact:
Glen Wurden
Press and General Inquiries Email:
Project Contact Email:


University of Nevada: Reno

Related Projects

Release Date: