Direct Air Capture Utilizing Hydrogen-Assisted Carbonate Electrolysis

ARPA-E Project Image

Special Projects
Project Term:
06/01/2021 - 05/31/2023

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

Direct capture of CO2 from ambient air is necessary to reduce greenhouse gas emissions in the atmosphere. Due to the dilute nature of the CO2, capturing it in ambient air is challenging and requires different strategies than carbon capture from concentrated CO2 waste streams. Giner, Inc., (Giner) proposes a novel process that uses a liquid solvent, regenerated electrochemically, to capture dilute CO2 from air to produce a purified, concentrated CO2 stream. The stream can be redirected for use as a feedstock for a wide variety of applications, including chemical manufacturing and syngas formation. This process has the potential for large scale-up, with no environmental limitations and virtually no chemical waste generated.


ARPA-E Program Director:
Dr. Scott Litzelman
Project Contact:
Dr. Judith Lattimer
Press and General Inquiries Email:
Project Contact Email:

Related Projects

Release Date: