Design of Smart Micro-Flare Fleet to Mitigate Distributed Methane Emissions

ARPA-E Project Image


Program:
Special Projects
Award:
$451,676
Location:
San Francisco,
California
Status:
ACTIVE
Project Term:
07/05/2021 - 07/04/2023

Critical Need:

This topic seeks to support entrepreneurial energy discoveries, by identifying and supporting disruptive concepts in energy-related technologies within small businesses and collaborations with universities and national labs. These projects have the potential for large-scale impact, and if successful could create new paradigms in energy technology with the potential to achieve significant reductions in U.S. energy consumption, energy-related imports, or energy-related emissions. These specific projects address technology areas across ARPA-E’s mission spaces, with particular focus on: Advanced bioreactors; Approaches and tools to create enhanced geothermal systems; Non-evaporative dehydration and drying technologies; Approaches to significantly enhance the rate and/or potential scale of carbon mineralization; Separation of CO2 from ambient air (direct air capture); High-rate separation of dissolved inorganic carbon from the ocean to produce a CO2 stream; Advanced trees and other engineered biological systems for carbon sequestration; Innovative deep ocean collector designs for mining polymetallic nodules; Environmental sensors capable of operation in deep ocean environments for mining polymetallic nodules; and Non-carbothermic smelting technologies. Awards under this topic are working to support research and establish potential new areas for technology development, while providing ARPA-E with information that could lead to new focused funding programs. The focus of these projects is to support exploratory research to establish viability, proof-of-concept demonstration for new energy technology, and/or modeling and simulation efforts to guide development for new energy technologies.

Project Innovation + Advantages:

Flares are widely used address methane emissions, eliminating a safety issue, and reducing greenhouse gas impacts up to 90%. There are many technical and economic challenges for designing small flares that operate reliably with high destruction efficiency, however. Frost Methane Labs proposes to develop a “micro-flare,” capable of handling emissions from sources from 10-200 tonnes of methane per year per site. The micro-flare consists of a combustion chamber, pilot light or electronic ignition source, upstream flow and methane concentration monitoring, controls electronics, and remote communications. The system will have low capital and operating costs. Commercialization of this technology could offset approximately 290 megatonnes of CO2 equivalent per year worldwide, equivalent to removing 60 million cars from the road.

Contact

ARPA-E Program Director:
Dr. Jack Lewnard
Project Contact:
Olga Irzak
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
olya@frostmethane.com

Related Projects


Release Date:
05/20/2020