Biofuels from Sorghum

Default ARPA-E Project Image

Chicago, Illinois
Project Term:
01/01/2012 - 12/31/2015

Technology Description:

Chromatin will engineer sweet sorghum—a plant that naturally produces large quantities of sugar and requires little water—to accumulate the fuel precursor farnesene, a molecule that can be blended into diesel fuel. Chromatin's proprietary technology enables the introduction of a completely novel biosynthetic process into the plant to produce farnesene, enabling sorghum to accumulate up to 20% of its weight as fuel. Chromatin will also introduce a trait to improve biomass yields in sorghum. The farnesene will accumulate in the sorghum plants—similar to the way in which it currently stores sugar—and can be extracted and converted into a type of diesel fuel using low-cost, conventional methods. Sorghum can be easily grown and harvested in many climates with low input of water or fertilizer, and is already planted on an agricultural scale. The technology will be demonstrated in a model plant, guayule, before being used in sorghum.

Potential Impact:

If successful, Chromatin's project will enable large-scale production of renewable biofuels from crops that do not compete with food production.


The transportation sector accounts for nearly all of our petroleum imports. Providing an advanced biofuels alternative to petroleum will allow the U.S. to reduce these imports, improving our energy independence.


More than 25% of all greenhouse gas emissions in the U.S. come from the transportation sector. Because plants naturally absorb carbon dioxide as they grow, greenhouse gas emissions from biofuels are less than half that of petroleum fuels.


The U.S. imports nearly $1 billion in petroleum each day, accounting for the single largest factor in our trade balance with the rest of the world. Biofuels can be produced domestically, allowing us to keep more dollars at home.


ARPA-E Program Director:
Dr. Joe Cornelius
Project Contact:
Dr. Daphne Preuss
Press and General Inquiries Email:
Project Contact Email:


University of North Texas
Evolva, Inc.
Kansas State University
Ohio State University

Related Projects

Release Date: