Bioenergy Production Based on an Engineered Mixotrophic Consortium for Enhanced CO2 Fixation

Default ARPA-E Project Image


Program:
ECOSynBio
Award:
$2,752,577
Location:
Newark,
Delaware
Status:
ACTIVE
Project Term:
08/05/2021 - 08/04/2024
Website:

Critical Need:

A robust and sustainable bioeconomy can only be realized through the industrial-scale, carbon-neutral synthesis of fuels, chemicals, and materials. Biofuels, along with a growing number of other sustainable products, are made almost exclusively via fermentation, the age-old technology used to produce foods such as wine, beer, and cheese. Current commercial methods to produce ethanol biofuel from sugar or starches waste more than 30% of the carbon in the feedstock as carbon dioxide (CO2) in the fermentation step alone. This waste limits product yields and squanders valuable feedstock carbon as greenhouse gas CO2. Preventing the loss of carbon as CO2 during bioconversion, or directly incorporating external CO2 as a feedstock into bioconversions, would revolutionize bioprocessing by increasing the product yield per unit of carbon input by more than 50%.

Project Innovation + Advantages:

The University of Delaware aims to develop a platform technology based on synthetic syntrophic consortia of Clostridium microbes to enable fast and efficient use of renewable carbohydrates to produce targeted metabolites as biofuels or chemicals. In this syntrophic microbial consortium, two microbial species are co-cultured, allowing the different species to divide individual bioconversion steps and reduce their individual metabolic burden. This project will achieve complete utilization of glucose substrate carbon while also using additional CO2 and electrons from H2 to generate improved yields of products such as isopropanol. The isopropanol product can serve as biofuel component or a valuable solvent with a market size of $2.65B.

Potential Impact:

The application of biology to sustainable uses of waste carbon resources for the generation of energy, intermediates, and final products---i.e., supplanting the “bioeconomy”—provides economic, environmental, social, and national security benefits and offers a promising means of carbon management.

Security:

If successful, the new technologies are expected to catalyze new conversion platforms for biofuels and other high-volume bioproducts that are capable of promoting U.S. energy security by increasing recoverable product from the same mass of feedstock through the avoidance of wasting carbon in the form of CO2.

Environment:

This program funds cutting-edge technologies to de-risk the engineering of carbon optimized bioconversion pathways capable of generating valuable bioproducts such as sustainable aviation fuel without emission of CO2 as a waste product.

Economy:

The technologies funded by this program can increase the potential bioproduct output by more than 40% without requiring another square inch of land or pound of feedstock, while catalyzing the next generation of carbon optimized bio-based manufacturing.

Contact

ARPA-E Program Director:
Dr. David Babson
Project Contact:
Prof. Eleftherios Terry Papoutsakis
Press and General Inquiries Email:
ARPA-E-Comms@hq.doe.gov
Project Contact Email:
epaps@udel.edu

Partners

Tulane University

Related Projects


Release Date:
05/14/2021