Adaptive SOFC for Ultra High Efficiency Power Systems

Critical Need:
Project Innovation + Advantages:
FuelCell Energy will develop an adaptive, pressurized solid oxide fuel cell (SOFC) for use in hybrid power systems. Hybridized power generation systems, combining energy efficient SOFCs with a microturbine or internal combustion (IC) engine, offer a path to high efficiency distributed generation from abundant natural gas. Proof-of-concept systems have shown the potential of this hybrid approach, but component optimization is necessary to increase system efficiencies and reduce costs. Existing SOFC stacks are relatively expensive components, and improving their efficiency and robustness would enhance the overall commercial viability of these systems. This team's approach is to focus directly on improving SOFCs with hybrid integration as their end goal. Their adaptive cells will withstand the necessary pressure fluctuations, and the compact stack design aims to make the best use of heat transfer while minimizing leakage losses and maintaining high performance. The team will take a modular approach, building 2-5kW stacks that can be grouped together in a pressurized container. These modules can be added or removed as needed to suit the scale of the hybrid system, enabling a range of power applications. The baseline cell technology will also be modified through advanced materials that extend the useful life of stack and mitigate the harmful effects of contaminants on fuel cell performance. If successful, these adaptive, efficient, robust SOFCs could provide a path to greater than 70% efficiency when integrated into a hybrid system.
Potential Impact:
The INTEGRATE program is developing a new class of distributed and ultra-efficient (>70%) fuel to electric power conversion systems for commercial and industrial customers.
Security:
Distributed electrical generation systems can produce highly reliable electric power supplies.
Environment:
Economy:
These systems’ high efficiency and avoidance of electric grid transmission and distribution costs offer the potential for lower cost electric power.