Blog Posts
Part of ARPA-E’s mission is to overcome long-term and high-risk technological barriers in the development of energy technologies that reduce imports, improve efficiency, and reduce emissions. The Rebellion Photonics and University of Notre Dame projects focus on the latter piece of the mission, working to turn emissions reduction ideas into reality.

Blog Posts
ARPA-E recently released a funding opportunity, Systems for Monitoring and Analytics for Renewable Transportation Fuels from Agricultural Resources and Management (SMARTFARM), to develop innovative new technologies for measuring emissions from agricultural feedstock production. We sat down with Dr. David Babson, SMARTFARM’s Program Director, to learn about his vision and the technologies of interest for Phase 2 of the program.

Blog Posts
Recently, we had an opportunity to sit down with Dr. Jack Lewnard, program director for ARPA‑E REcyle Underutilized Solids to Energy (REUSE) program to discuss the transformation from plastic and paper trash to energy treasure.

Blog Posts
We’re excited to announce a new partnership with DoD’s Environmental Security Technology Certification Program (ESTCP) to further demonstrate and validate ARPA-E derived technologies at DoD installations across the country. ESTCP targets DoD’s urgent environmental and installation energy needs to improve Defense readiness, resilience and costs. Projects under this partnership will conduct demonstrations to validate the performance and operational costs of promising ARPA-E technologies and provide valuable data needed for end-user acceptance and to accelerate the transition of these technologies to commercial use.

Blog Posts
We recently sat down with Dr. Babson to discuss how he became interested in energy, his journey serving in various roles across the federal government, and the future of bioenergy and agricultural systems.

Blog Posts
We sat down with ARPA-E Program Director, Dr. Rachel Slaybaugh, as she reflected on her experience attending the very first ARPA-E Energy Innovation Summit Student Program back in 2010.

Slick Sheet: Project
8 Rivers Capital seeks to enhance the profitability and responsiveness of gas turbine generators in high variable renewable energy environments. This project would retrofit existing plants with Exhaust Gas Recycle (EGR) and a novel phase-change solvent CO₂ capture system known as UNO MK3, offering a lower cost pathway than new gas turbines with capture. The UNO MK3 process captures 90% of exhaust gas CO2 using a benign precipitating solvent at high concentration to reduce circulation rates and decrease energy usage.

Slick Sheet: Project
Micro Nano Technologies (MNT) proposes a proof-of-concept, thermally driven industrial semi-open absorption heat pump drying system to address current drying technology limitations and increase energy efficiency by 40% over state of the art. Because it is heat source flexible, this efficient, compact, and cost-effective drying system will permit the use of the lowest cost fuel per location, reducing operating costs, saving energy, and lowering greenhouse gas emissions at the grid/system level.

Slick Sheet: Project
Direct air capture (DAC) of carbon dioxide (CO2) is a promising technology in reversing greenhouse gas emissions. DAC is possible through liquid and solid-sorbent technologies, but the lower energy costs for solid-sorbent technology can facilitate widespread, rapid deployment of DAC systems. Current DAC sorbents are limited in how much CO2 they can remove for a given amount of material, requiring large amounts of sorbent, increased system sizes, and higher cost. Mosaic Materials has developed an ultrahigh capacity sorbent using materials known as metal-organic frameworks (MOFs).

Slick Sheet: Project
Direct capture of CO2 from ambient air is necessary to reduce greenhouse gas emissions in the atmosphere. Due to the dilute nature of the CO2, capturing it in ambient air is challenging and requires different strategies than carbon capture from concentrated CO2 waste streams. Giner, Inc., (Giner) proposes a novel process that uses a liquid solvent, regenerated electrochemically, to capture dilute CO2 from air to produce a purified, concentrated CO2 stream.