Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
More information on this project is coming soon!


Slick Sheet: Project
Gencores enables technology for ultra-light vehicles to decarbonize transportation. Herein they demonstrate a scalable and digital production of low-cost and high-performance hybrid Polymethacrylimide (PMI) foam cores for sandwich composite constructions. Sandwich composites feature a foam core wrapped in fiber-reinforced skins and offer a 40-75% weight reduction potential compared with traditional metal alternatives. Current PMI foam cores are costly and time-consuming to produce in complex shapes.

Slick Sheet: Project
More information on this project is coming soon!

Slick Sheet: Project
Metalx Biocycle aims to enable the recycling of critical metals from electronic waste (e-waste) at a cost that is competitive against extraction via conventional mining. Most e-waste ends up in landfills where it causes serious environmental issues; and conventional extraction methods rely on inefficient, expensive, energyintensive processes. The Metalx Biocycle team will leverage biological processes to efficiently extract, concentrate, and purify critical metals and rare earth elements from e-waste and low-grade mineral ores.

Slick Sheet: Project
The University of Michigan and Southwest Research Institute will use state-of-the-art methods to eliminate methane emissions from oil and gas (O&G) flares, vents, and other equipment. The approach will quantitatively characterize high- and low-volume methane sources at an actual O&G field site and demonstrate Systems of Advanced Burners for Reduction of Emissions (SABRE) technology for high-efficiency (> 99.5%) methane conversion of the high- and low-volume sources of methane. The SABRE approach leverages site resources and customizes flare technology to local equipment needs.

Slick Sheet: Project
AtmosZero, in partnership with Colorado State University, seeks to develop a modular high-temperature heat pump system with the potential to significantly reduce carbon emissions from on-site heat generation in the U.S. industrial sector. Approximately 75% of all on-site energy consumption in the U.S. manufacturing sector is used to generate heat, which means industrial process heat must be decarbonized to substantially reduce U.S. emissions.

Slick Sheet: Project
Media and Process Technology (MPT) proposed a process to convert high-energy evaporative drying into lowenergy filtration with the potential to reduce energy consumption in wet substrate dewatering by up to 90%. The team will demonstrate the technical feasibility and energy and cost savings potential of a non-evaporative substrate drying process based upon supercritical CO2 (scCO2) extraction combined with downstream ceramic membrane filtration.