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Designing Biological Systems for Programed
Interface with the Environment

® The synthetic biology platform
® Microbes that process sunlight and CO2

® Photosynthetic ecosystems and organisms




Can we make Biology easier to engineer?

Rapid, inexpensive DNA synthesis

Sequenced genomes for raw materials

Information explosion via the internet

Worldview from computer chip design
- Appreciation of biological modularity
eg promoters, genes, proteins




Biological Modularity

What does Nature have to offer?
» Examples of modularity:
Genes (promoters, ORFs, introns, enhancers)
RNA (Translation, stability, export, localization)
Proteins (Targeting, DNA binding, dimerization, degradation)

Pathways (Signaling, metabolism)

> Biological design can test the limits of modularity




Bacterial Devices - Abstraction
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Can we make biological design predictable?

» Standardized parts
* Measurements of behavior
* Mathematical models

* Gene to genome synthesis - when does the ‘experiment’ start?

- Consider the future synthetic biologist........




Designing Light-
Dependent
BioSystems




Engineering microor ganisms for
ener roduction

Conclusions from the JASON report:

Boosting efficiency of fuel formation form microorganisms is THE
major technological application of Synthetic Biology

Engineering fuel production from microbes is a SYSTEMS problem

Successful engineering requires a basic understanding of the system
to be engineered (multiple feedback loops, etc)

Study Leader Mike Brenner; 6/23/06




Photosynthetic organisms come in all shapes
and sizes

non-vascular
plant.

Cyanobacteria are responsible for ~50%6 of all
photosynthesis on earth!
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spatial organization is important for
engineering and biology
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Cyanobacteria contain cytoplasmic structures

Photosystems »

thylakoid

Stanier et al. 1977

&= cell membrane




Carboxysomes are a large organized unit

e Concentrate Rubisco+ Carbonic Anhydrase+ CO,

® Solution to rubisco’s inefficiency!
® Resemble viral capsid

80-120nm

Enzymes and shell proteins

Figure from http://upload.wikimedia.org/wikipedia/commons/5/54/Carboxysome_3_images.png

The enzyme carbonic anhydrase, which catalyzes the production of CO, from bicarbonate



The carboxysome is part of a carbon
concentrating mechanism

CO; HCOs

This system increases the cell’s affinity
for CO2 1000x! Dave s,




Carboxysomes can be labeled
‘with fluorescent proteins

RuBisCo
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We can track carboxysomes and cells
over many days




Even spatial distribution can optimize metabolism

e A diffusion-limited reaction will be susceptible to spatial
arrangements

Total energy production

>

Pairwise distance




Harnessing Bacterial Photosynthesis
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FeS clusters: Biology’s Nanowires

* A photon lands on
Photosystem |

e The electron is
excited to enter the
iron-sulfur clusters

e The electron exits
by tunneling into
ferredoxin




Hydrogenase Rescues Growth on Minimal Media

+ Hydrogenase ¢

Sulfite
Reductase

Ferredoxin




Grand Challenge: Can we Efficiently Connect
Photosynthesis to Hydrogen Production

- i Hydrogenase

B i — H,

Ferredoxin

Photosystem 1 e




Platform for chemical synthesis

isoprene / . .
CO, isoprenoids amino acids

. value-added metabolites:
dycolysis formate, glycerol etc.

Ribulose-1.5- 3-phosphoglycerate sy pyruvate
bisphosphate PDC thioesterase -
modified fatty-acid
hV ADH fntl’{esz
ADP Y
carbon-fixation alcohols/ novel fatty
cycle ATP &) light — higher acids
eactions  alcohols
NADP WS/DGAT
hydrogenase biodiesel

triose

Enormous advantage for biomass-independent chemical synthesis
13




Wax Synthase can synthesize
biodiesel in vivo
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Kalscheuer et al. 2006




Thioesterase determines fatty
acid chain length

acetyl-CoA

malonyl-CoA
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Thioesterases are expressed and
functional in Synechococcus

100+  GC-MS analysis 8:28s,
Strain 651S
c16 IPTG
16.13
>
|
Q\Q
1 l c18
‘ 17.51
C12 (lauric acid) c14 } } ']
* * w } 17.40 |
Lo 14.88 | ' ||
rw\l».w-{w‘v‘\n'-"\ﬁrv,v‘a';«xv/-wxw.\“%.v.’wa.»mwmfv("b,vv“\.‘w«n'ww‘W\.w/vr'w}L)‘.‘*Wn ) Avotd ““W‘ Y R AR WP |

0,,

1300 1400 1500 1600 1700  18.00




We are testing three alcohol
synthesis pathways
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pyruvate
hot theti
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how does metabolism vary with the
circadian rhythm?

Ik







Platform for chemical synthesis

200 W/m:

Transporters
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Sugar production in cyanobacteria

» Sugars = feedstock for all metabolic engineering
* Glucose + fructose mixture = ‘high-fructose corn syrup’
* Engineering concept:

— Induce sucrose production by osmotic stress (natural process)
— Invertase = enzyme that cleaves sucrose

— GLF = facilitated diffusion transporter for glucose, fructose

Co, Glucose facilitated
nsport (GLF)
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Expression of gIf and invA in Synechococcus to
produce glucose and fructose

sugar in the medium:
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0D 750 nm

Synechococcus and E. coli coculture
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eeding E. coli with li
(on plates)
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How can we get bacteria into

I. Inject into
zygote

animal cells?
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2. Express
Invasin and
Listriolysin
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3. Phagocytosis




Making Photosynthetic Fish?

microinject engineered
Synechococcus into
zebrafish zygote

%@




nechococcus is taken up b
~ macrophages
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Mix of commercial potential and scientific

feasibility
Isoprene
$0.030 — O
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Engineering complexity (# of genes + intangibles)
25




Getting to a bio-solar energy economy:
Thoughts and guesses

Technical step

Genetic engineering
Large-scale production

2-3 years
3-5 years (pilot-scale)

Major
challenges

Rational basis for engineering
Light distribution in scale-up

Business model to move to fuel
production

Excessive top-down control

Need basic research
Need DOE support

Production of higher-value compounds
first (or subsidies)

Fund multiple competing approaches

Prognostication

?
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