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Direct Reduction of Carbon Dioxide

CO, +2e +2H* <= CH,0, Formic Acid

CH,0,+2e +2H* <> CH,0+H,0 Formaldehyde

CH,O +2e + 2H* <— CH,0H Methanol

CH,OH +2e +2H* <— CH,+H,0 Methane




Formic Acid as Fuel

Light-induced Generation
Of Formic Acid from
Carbon Dioxide

ﬂ

CO, + 2H* + 26+ 2hv — Formic Acid As
A Storage Medium
'H,CO,l> CO, + 2H* + 2 + ﬂ
Y s P Generation of Electricity
i 2l From Direct
“ . Formic Acid Fuel Cell
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Formic Acid

Standard Enthalpy of Combustion, formic acid —255 kJ/mol
Standard Enthalpy of Combustion, methanol —715 kJ/mol

Standard Biochemical Midpoint Potential
2H"+2e «<— H, -420 mV
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Reversible interconversion of carbon dioxide
and formate by an electroactive enzyme

Torsten Reda*, Caroline M. Plugge', Nerilie J. Abram?*, and Judy Hirst*s
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Cambridge CB3 0ET, United Kingdom
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Fig. 1. Schematic repressntation of the electrocatalytic interconversion of
CO2 and formate by a formate dehydrogenass adsorbed on an electrode
surface. Two electrons are transferred from the electrode to the active site
(buried inside the insulating protein interior) by the iron—sulfur dusters, to
reduce €0z to formate, foming a C-H bond. Conversely, when formate is
cxidized, the two electrons are transferred from the active site to the elec-
trode. The structure of FDH1 Bedhich contains at least nine iren—sulfur clusters)
is not known, so the structure shown is that of the tungsten-containing
formate dehydrogenase from Desulfovibrio gigas [PDE ID code 1HOH (12]].
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Fig. 2. Electrocatalyticvoltarmmograms showing €0z reduction and formate
oxidation by FOH1. Shown are the reduction of 10 mM COz (pH 5.9) (4);
glectrocatalysis in 10 mM C0 and 10 mM formate (pH 6.4) (8), showing the
points of intersection (marked with crosses) that define the reduction poten-
tial for the interconversion of €05 and formate; and the cxidation of 10 mka
formate (pH 7.8} {C). The first voltammetric cydes are shown in black, subse-
quert cyces are in gray; background cycles recorded in the absence of sub-
strate are also showin (gray). Mote that the background cycle in B is offset
slightly from the catalytic scans because of variation in the electrode capaci-
tance. Substrateswere added as sodium formate or sodium carbonate. For A
and €, 25 mV 571 for B, 100 m s~ 1; 37°C, electrode rotation 1,000 rpm.



Project Goal

To use sunlight to drive the formation of H,CO, from CO, by tethering
FDH to Photosystem | using a molecular wire
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Light-Driven Electrolysis

Overall Reaction:
Anodic half reaction:

Cathodic half reaction:

2H,0 +8hv 0 2H, + O,
2(H,0 +2hv O %0, +2H* + 2¢’)

2Q2H* + 2e + 2hv O H,)

Anode

Cathode

hv



The Sensitizer: Photosystem |

The Catalyst: Formic Acid Dehydrogenase

The Coupler: A Molecular Wire
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Photosystem |

96 Chl a
22 B-carotene
3 [4Fe-4S]
2 Phylloquinones



Photosystem | Cofactors



Properties of Photosystem |

The Fg cluster has a pH-independent redox
potential of -580 mV.

Nearly every photon that is absorbed by PS |
antenna is processed into the charge separated
state P,y," Fg-

The 1.01 V in the charge-separated state P,,,"Fg"
represents a 59% conversion efficiency for a red
photon, and a 38% conversion efficiency for a
blue photon

The charge-separated state is stable for ~60 ms,
which is sufficient time to remove the low
potential electron to perform useful work
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Properties of Photosystem |

The Fg cluster has a pH-independent redox
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antenna is processed into the charge separated
state P,y," Fg-

The 1.01 V in the charge-separated state P,,,"Fg"
represents a 59% conversion efficiency for a red
photon, and a 38% conversion efficiency for a

Q blue photon

The charge-separated state is stable for ~60 ms,
which is sufficient time to remove the low
potential electron to perform useful work



Coupling PS | to the Catalyst

Moser & Dutton
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Solution: Molecular Wire
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Reconstitution of Dicluster Ferredoxin
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C14G Variant of PsaC

C13G/C335
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Evidence for Rescue Ligand
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Tether Substituted 4,4’-Dipyridinium
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Construct PS I-wire

PsaD

P700-F, Core

PS I-Molecular Wire



Construct PS I-wire
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PS I-wire-Pt

PsaD

P700-F, Core

PS I-Molecular Wire

Pt Nanoparticle




Light-Induced H, Production

_SOS_

2H*

DCPIP —

Rate = 377 pmol H, mg Chl-h-?



Length and Identity of the Molecular Wire

Tether H, evolution rate
(umol H, mg Chi h)

s NN 29

1,3-propanedithiol
TN NN N or.1

1,6-hexanedithiol
_S‘\//\\/W\

S— 40.8

1,8-octanedithiol

AN e e N
S— 13.6

1,10-decanedithiol

—503— 159.4

1,4-benzenedithiol



Desulfovibrio desulfuricans Fe-Fe H,ase



Abs (a.u.)

Purification of HydA and Cysyg->Gly Mutant

HydA Cysgg->Gly
Mutant
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PS I-wire-H,ase

PsaD

P700-F, Core

PS I-Molecular Wire

Mutant Fe-Fe Hydrogenase



PS I-Molecular Wire-H.,ase

H+

30.3 umol H, mg Chl! hrt

DCPIP ——

Carolyn Lubner



Escherichia coli Formate Dehydrogenase



PS I-wire-FDH

PsaD

P700-F, Core

PS I-Molecular Wire

Mutant Formic Acid Dehydrogenase



PS I-wire-FDH

PsaD

P700-F, Core

PS I-Molecular Wire

Mutant Formic Acid Dehydrogenase

In Progress



Biological/Organic Hybrid Half-Cell

Anode Cathode
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CO, + 2H+ High Density Liquid Fuel

w Y
A WA \
2hv A A —
\f |
Do—> zU elec*roae CO +H,0 (2n+1)H,+nCO =& CH, .,,+nH,0

N

co
..-"':"..-';_ ,'_ "-..,.-. . /

IR . o .
2hv LAY WA \ Fischer-Tropsch
2e—> Au electrode

Water Gas Shift

[ CO, +H, €=>CO +H,0 ]




Cobalt Difluoroboryl Diglyoximate Catalyst
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