Direct Solar CO$_2$ for Formic Acid Conversion Using a Biological/Organic Photochemical Half-Cell

ARPA-E Direct-Solar Fuel Technologies Workshop
October 21, 2009

John H. Golbeck
Department of Chemistry
Department of Biochemistry and Molecular Biology
The Pennsylvania State University
University Park, PA
Direct Reduction of Carbon Dioxide

\[\text{CO}_2 + 2 \text{e}^- + 2\text{H}^+ \leftrightarrow \text{CH}_2\text{O}_2 \quad \text{Formic Acid} \]

\[\text{CH}_2\text{O}_2 + 2 \text{e}^- + 2\text{H}^+ \leftrightarrow \text{CH}_2\text{O} + \text{H}_2\text{O} \quad \text{Formaldehyde} \]

\[\text{CH}_2\text{O} + 2 \text{e}^- + 2\text{H}^+ \leftrightarrow \text{CH}_3\text{OH} \quad \text{Methanol} \]

\[\text{CH}_3\text{OH} + 2 \text{e}^- + 2\text{H}^+ \leftrightarrow \text{CH}_4 + \text{H}_2\text{O} \quad \text{Methane} \]
Light-induced Generation Of Formic Acid from Carbon Dioxide

$\text{CO}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{CO}_2$

Formic Acid As A Storage Medium

$\text{H}_2\text{CO}_2 \rightarrow \text{CO}_2 + 2\text{H}^+ + 2e^- + \text{light}$

Generation of Electricity From Direct Formic Acid Fuel Cell

Formic Acid as Fuel
Formic Acid

Standard Enthalpy of Combustion, formic acid \(-255\) kJ/mol
Standard Enthalpy of Combustion, methanol \(-715\) kJ/mol

Standard Biochemical Midpoint Potential

\[
\begin{align*}
\text{CO}_2 + 2\text{H}^+ + 2\text{e}^- & \leftrightarrow \text{CH}_2\text{O}_2 & -420 \text{ mV} \\
2\text{H}^+ + 2\text{e}^- & \leftrightarrow \text{H}_2 & -420 \text{ mV}
\end{align*}
\]

Fig. 5. Cell voltage and power density were plotted as a function of the current density using 5, 10 and 15 M formic acids. The formic acids and air were fed to the anode at a flow rate of 1 ml min\(^{-1}\) and 400 sccm, respectively, at 30 °C. The dry air was used without applying any backpressure.
Reversible interconversion of carbon dioxide and formate by an electroactive enzyme

Torsten Reda*, Caroline M. Plugge†, Nerlile J. Abram‡, and Judy Hirst*§

*Medical Research Council Dunn Human Nutrition Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom; †Laboratory of Microbiology, Dreijenplein 10, 6703 HB Wageningen, The Netherlands; and §British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, United Kingdom

Fig. 1. Schematic representation of the electrocatalytic interconversion of CO₂ and formate by a formate dehydrogenase adsorbed on an electrode surface. Two electrons are transferred from the electrode to the active site (buried inside the insulating protein interior) by the iron-sulfur clusters, to reduce CO₂ to formate, forming a C-H bond. Conversely, when formate is oxidized, the two electrons are transferred from the active site to the electrode. The structure of FDH1 (which contains at least nine iron-sulfur clusters) is not known, so the structure shown is that of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas [PDB ID code 1H0H (12)].

Fig. 2. Electrocatalytic voltammograms showing CO₂ reduction and formate oxidation by FDH1. Shown are the reduction of 10 mM CO₂ (pH 5.9) (A); electrocatalysis in 10 mM CO₂ and 10 mM formate (pH 6.4) (B), showing the points of intersection (marked with crosses) that define the reduction potential for the interconversion of CO₂ and formate; and the oxidation of 10 mM formate (pH 7.8) (C). The first voltammetric cycles are shown in black, subsequent cycles are in gray; background cycles recorded in the absence of substrate are also shown (gray). Note that the background cycle in B is offset slightly from the catalytic scans because of variation in the electrode capacitance. Substrates were added as sodium formate or sodium carbonate. For A and C, 25 mV s⁻¹, for B, 100 mV s⁻¹; 37°C, electrode rotation 1,000 rpm.
Project Goal

To use sunlight to drive the formation of H$_2$CO$_2$ from CO$_2$ by tethering FDH to Photosystem I using a molecular wire.
Light-Driven Electrolysis

Overall Reaction:

\[
2\text{H}_2\text{O} + 8\text{hv} \rightarrow 2\text{H}_2 + \text{O}_2
\]

Anodic half reaction:

\[
2(\text{H}_2\text{O} + 2\text{hv}) \rightarrow \frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2\text{e}^-
\]

Cathodic half reaction:

\[
2(2\text{H}^+ + 2\text{e}^- + 2\text{hv}) \rightarrow \text{H}_2
\]
The Sensitizer: Photosystem I

The Catalyst: Formic Acid Dehydrogenase

The Coupler: A Molecular Wire
Photosystem I

- 96 Chl α
- 22 β-carotene
- 3 [4Fe-4S]
- 2 Phylloquinones
Photosystem I Cofactors
Properties of Photosystem I

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.

The F_B cluster has a pH-independent redox potential of -580 mV.

Nearly every photon that is absorbed by PS I antenna is processed into the charge separated state $P_{700}^+ F_B^-$.

The 1.01 V in the charge-separated state $P_{700}^+ F_B^-$ represents a 59% conversion efficiency for a red photon, and a 38% conversion efficiency for a blue photon.

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.
Properties of Photosystem I

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.

The F_B cluster has a pH-independent redox potential of -580 mV.

Nearly every photon that is absorbed by PS I antenna is processed into the charge separated state $P_{700}^+F_B^-$.

The 1.01 V in the charge-separated state $P_{700}^+F_B^-$ represents a 59% conversion efficiency for a red photon, and a 38% conversion efficiency for a blue photon.

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.
Properties of Photosystem I

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.

The F_B cluster has a pH-independent redox potential of -580 mV.

Nearly every photon that is absorbed by PS I antenna is processed into the charge separated state $P_{700}^+ F_B^-$.

The 1.01 V in the charge-separated state $P_{700}^+ F_B^-$ represents a 59% conversion efficiency for a red photon, and a 38% conversion efficiency for a blue photon.

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.
Properties of Photosystem I

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.

The F_B cluster has a pH-independent redox potential of -580 mV.

Nearly every photon that is absorbed by PS I antenna is processed into the charge separated state $P_{700}^+ F_B^-$.

The 1.01 V in the charge-separated state $P_{700}^+ F_B^-$ represents a 59% conversion efficiency for a red photon, and a 38% conversion efficiency for a blue photon.

The charge-separated state is stable for ~60 ms, which is sufficient time to remove the low potential electron to perform useful work.
Coupling PS I to the Catalyst

- Time: 1 ns, 1 µs, 1 ms, 1 s, 1 h, 1 yr, 1 century
- Distance: < 20 Å

Moser & Dutton

< 20 Å
Solution: Molecular Wire

![Molecular Wire Diagram](image-url)
Reconstitution of Dicluster Ferredoxin
C14G Variant of PsaC

- $\text{S-CH}_2\text{-CH}_2\text{-OH}$

2 $[4\text{Fe-4S}]$ \quad S = 1/2, 3/2
Evidence for Rescue Ligand

p-fluorothiophenol
Tether Substituted 4,4’-Dipyridinium
Construct PS I-wire
Construct PS I-wire

PsaD → P700-Fx Core → PS I-Molecular Wire

Graph: Time (m) vs. construct concentration
PS I-wire-Pt

PsaD → P700-Fe₃ Core

PS I-Molecular Wire

Pt Nanoparticle

50 nm
Light-Induced H_2 Production

Pt NP

$2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2$

Rate = 377 μmol H_2 mg Chl$^{-1}$ h$^{-1}$
Length and Identity of the Molecular Wire

<table>
<thead>
<tr>
<th>Tether</th>
<th>H₂ evolution rate (μmol H₂ mg Chl⁻¹ h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3-propanedithiol</td>
<td>2.2</td>
</tr>
<tr>
<td>1,6-hexanedithiol</td>
<td>57.7</td>
</tr>
<tr>
<td>1,8-octanedithiol</td>
<td>40.8</td>
</tr>
<tr>
<td>1,10-decanedithiol</td>
<td>13.6</td>
</tr>
<tr>
<td>1,4-benzenedithiol</td>
<td>159.4</td>
</tr>
</tbody>
</table>
Desulfovibrio desulfuricans Fe-Fe H$_2$ase
Purification of HydA and Cys\textsubscript{98}\textrightarrow{Gly} Mutant

HydA

Cys\textsubscript{98}\textrightarrow{Gly} Mutant

Graphs showing absorbance (Abs) against wavelength for both HydA and Cys\textsubscript{98}\textrightarrow{Gly} Mutant.
PS I-wire-H$_2$ase
PS I-Molecular Wire-H$_2$ase

30.3 μmol H$_2$ mg Chl$^{-1}$ hr$^{-1}$

Carolyn Lubner
Escherichia coli Formate Dehydrogenase
PS I-wire-FDH

PsaD \rightarrow P700-F_x Core

PS I-Molecular Wire

Mutant Formic Acid Dehydrogenase
PS I-wire-FDH

In Progress
Biological/Organic Hybrid Half-Cell

Anode

Cathode

$2e^-
ightarrow Au electrode$

High Density Liquid Fuel

\[
\text{CO}_2 + 2\text{H}^+ \rightarrow \text{CO} + \text{H}_2 \text{O} \\
(2n+1)\text{H}_2 + n\text{CO} \rightarrow C_nH_{(2n+2)} + n\text{H}_2\text{O} \\
\text{C}_n\text{H}_{(2n+2)} + n\text{H}_2\text{O} \rightarrow \text{C}_n\text{H}_{(2n+2)} + n\text{H}_2\text{O}
\]

Fischer-Tropsch

\[
2\text{e}^- \rightarrow \text{Au electrode} \\
2\text{hv} \\
2\text{H}^+ \\
\text{CO} \rightarrow \text{H}_2
\]

Water Gas Shift

\[
\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O}
\]
Cobalt Difluoroboryl Diglyoximate Catalyst

(1) $M=\text{Co}, R=\text{CH}_3$
(2) $M=\text{Co}, R=\text{C}_6\text{H}_5$
(3) $M=\text{Ni}, R=\text{CH}_3$
(4) $M=\text{Ni}, R=\text{C}_6\text{H}_5$

Richard Eisenberg, University of Rochester
Project Participants

Donald Bryant - PSU
Carolyn Lubner - PSU
Rebecca Grimme - PSU
Paulo Silva - PSU

Matthew Posewitz - NREL
Kylie Vincent – Oxford U.
Thomas Happe – U. of Bochum
Bärbel Friedrich – Humboldt U.
Peter Hildebrandt – Technische U. (Berlin)
Silke Leimkühler – U. of Potsdam