

Report back: *Technology specific: Internal Combustion Engines*

June 2, 2011

<u>Category</u>	ARPA-E's proposed	
System rating	7 kWe	
Electrical efficiency	≥ 50%	
(@ ≥50% kW rating)		
Cost	\$10k CAPEX @ 10,000 units per year	
Lifetime	>7yrs	

• Within each technology platform, what are the technology pathways towards these targets?

• Where is the ARPA-E play?

- Efficiency is the key metric, cost and reliability are much more feasible
- Getting to this high efficiency constrains your shaft speed
- For low power engines, the ICE will need to have ~55% brake thermal efficiency
- This sets the challenge to hit this efficiency
- This would be a transformational change, and perceived to be very difficult
- •Challenge will be producing an engine that is small enough at high efficiency
- Cycles available in order of highest efficiency
- (1) New cycles
- (2) Brayton
- (3) Diesel
- (4) Atkinson
- (5) Otto

Key takeaways for single-family Internal Combustion Engines

- Knobs available in order of highest impact
- (1) Thermodynamic cycle
- (2) Engine architecture and combustion approach
- (3) Materials
- (1) Thermodynamic Cycle
- Complete expansion, camless, split cycle, high gamma (use argon)
- (2) Ignition
- Plasma, HCCI
- (2) Combustion
- Oxyfuel remove N2, use EGR or add argon
- (2+3) Low Heat Loss
- Low turbulence, low wall K, high wall temperature
- (3) Low Friction
- Piston rod, non-piston cylinder, advanced oils, oil-less engine

<u>Category</u>	ARPA-E's proposed
System rating	350 kWe
Electrical efficiency	≥60%
(@ ≥50% kW rating)	
Cost	\$1500/kW CAPEX @ 2,500 units/yr
Lifetime	>7yrs

• Within each technology platform, what are the technology pathways towards these targets?

• Where is the ARPA-E play?

- 1. Incorporation of a Bottoming Cycle onto an ICE.
 - With current technology it should be possible to hit 60% efficiency with an engine + bottoming cycle
 - <u>Challenges:</u>
 - Efficient engine designs are already ~ \$1500/kW
 - Adding a bottoming cycle (roughly ~750 \$/kW now) will push it beyond the price point
 - Success involves bending the cost curves on <u>both</u> the engine and the bottoming cycle.
 - Low cost heat exchanger is a big need for the bottoming cycles

- 2. New Engine Architectures
 - There are a number of people sitting on promising blueprints.
 - Accept new engine architecture proposals, result at the end of three years should be:
 - ~50 kW prototype
 - Efficiency targets ~50%-55% with path to 60% at scale
 - Business plan with necessary cost reductions at scale
 - Experimental data validating concept a big plus, modeling only data requires heavy scrutiny
 - Free piston engine a possibility
 - Linear alternator would be a huge advance

- Emerging Combustion Methods
 Pulsed Plasma Ignition Discussed (Martin Gunderson)
- •New Engine Cycles
 - •No one knew what a Humphrey cycle is.

•Atkinson could be a promising cycle, lower energy density is a constraint in mobile applications, less so in stationary.

Materials Advances

- Not a lot space of white space on friction advances, industry tackling it
 Material advances currently not a constraint
- •Differences Stationary/Mobile
 - •Lower volumetric and specific power density is a plus
 - Have to take into account the installation cost (laying concrete, etc)
 - •Can pick a sweet spot for operation, less transients cycling than mobile operations
- •What is needed to evaluate proposal
 - •Experimental data validating concept is a big plus, modeling only data requires heavy scrutiny

Major sources of inefficiency	
Entropy increase from combustion	~20%
Cooling losses	~10-15%
Exhaust losses	~5-10%
Friction losses	~5%
Emission controls	~1-3%

Potential "knobs" to increase η	Impact rank	Risk rank
Engine architecture	1	1
Thermodynamic cycle	Tied @ 2	3
Combustion approach	Tied @ 2	2
Materials	4	4

