

Small-Scale Distributed Generation Workshop

Geoff Short David Shum June 1-2, 2011

Why Focus on Small-Scale Distributed Power Generation ?

- Address existing challenge to improve electricity-generation efficiency while reducing GHG emissions
- ARPA-E Vision Enable transformational & disruptive technologies
 - 1) 24x7x365, reliable, economical system providing full energy needs of the home / neighborhood / building
 - 2) Complement evolution toward a smarter grid with 24x7x365 local self-generation & dispatchable power/storage
 - 3) Go beyond meeting "utility functions" by catalyzing energyuse innovations
 - 4) Support energy demand growth in developing regions without a legacy grid infrastructure

While Industrial-Scale CHP/CCHP is On-Going, the Large # of End-Users & Lower "Unit" Power Provide Unique Challenges for Residential & Commercial Segments

		Avg Monthly
	# of	Consumption
	Consumers	(kwh)
Residential	125,177,175	908
Commercial	17,561,661	6,203
Industrial	757,519	100,926

DG already well underway in industrial and "campus" segments Residential + Commercial = 75% of U.S. Electricity Use

Challenge #1: Need Massively Scalable & Economical Solutions to Achieve National Impact (10% Adoption \rightarrow 1Quad savings)

Type of Housing Unit	
Single-Family Detached	72.1
Single-Family Attached	7.6
Apartments in 2-4 Unit Buildings	7.8
Apartments in 5 or More Unit Buildings	16.7
Mobile Homes	6.9

Challenge #2: Ratio of Electricity/Heat (E/H) Demand Highly Variable Across Geography (Season, Time of Day)

			Reg	ions	
Characteristics	Total occupied units	Northeast	Midwest	South	West
Total	111,806	20,451	25,368	41,586	24,401
All Electric Homes	37,851	2,448	4,362	24,280	6,761
		11.97%	17.20%	58.47%	28.08%

NERG

	U.S.	Fuels Used (physical units)						
	Households (millions)	Electricity (billion kWh)	Natural Gas (billion kWh)	Fuel Oil (billion kWh)	Kerosene⁴ (billion kWh)	LPG (billion kWh)	Total Fuel (billion kWh)	Ratio (Fuel/ Electric)
Total	111.1	1,275	1,404	254	5	153	1,816	1.42
Census Region and Division								
Northeast	20.6	169	336	211	1	20	568	3.36
New England	5.5	41	72	88	Q	6	166	4.05
Middle Atlantic	15.1	129	264	124	Q	14	401	3.11
Midwest	25.6	276	505	17	Q	52	574	2.08
East North Central	17.7	186	378	16	Q	32	425	2.29
West North Central	7.9	90	128	Q	Q	20	148	1.64
South	40.7	606	275	17	3	53	347	0.57
South Atlantic	21.7	319	127	15	2	21	165	0.52
East South Central	6.9	110	50	Q	Q	15	65	0.59
West South Central	12.1	177	98	N	N	17	115	0.65
West	24.2	223	288	9	Q	29	325	1.46
Mountain	7.6	82	98	Q	N	17	115	1.40
Pacific	16.6	141	190	7	Q	11	209	1.48
							(C)	U.S. DEPARTMENT OF

Challenge #3: *Small-Scale* DG technologies struggle to provide Sufficient Electricity & E/H Ratio on a 24x7x365, economical basis - *Recip Engines & Microturbines*

* Commercially and near-commercially available systems only

Challenge #3: *Small-Scale* DG technologies struggle to provide Sufficient Electricity & E/H Ratio on a 24x7x365, economical basis - *Recip Engines & Microturbines*

Advanced Research Projects Agency • Energy

* Commercially and near-commercially available systems only

Challenge #3: *Small-Scale* DG technologies struggle to provide Sufficient Electricity & E/H Ratio on a 24x7x365, economical basis – *Fuel Cells & Stirling Engines*

Challenge #3: *Small-Scale* DG technologies struggle to provide Sufficient Electricity & E/H Ratio on a 24x7x365, economical basis

* Commercially and near-commercially available systems only

Advanced Research Projects Agency • Energy

)

Challenge #3: *Small-Scale* DG technologies struggle to provide Sufficient Electricity & E/H Ratio on a 24x7x365, economical basis

Advanced Research Projects Agency • Energy

10

ARPA-E Vision: Mass Adoption of High-Efficiency Genset - 24x7x365 Economical Electricity Generator

High-Efficiency Genset – Strawman Characteristics

- Fuel-only or *integrated* hybrid of renewable with fuel firming
 - Single prime-mover
 - Two primer-movers for hybrid or combined-cycle system
 - A collection of integrated low-power primer-movers
- Fuel: Natural gas, opportunity fuels, or natural gas focused dual-fuels
- 24x7x365 operation, economical, reliable, full energy needs
- 5-10kwe 40%+ efficiency; 200-500kwe 60%+ efficiency
- Additional functional, emissions, and cost metrics (\$500-\$2000/kwe)

Overall, Current Systems do not meet Strawman Baseline Targets, Especially not at Low Cost

Recip Engines & Microturbines → Cost and/or Efficiency Gaps

* Commercially and near-commercially available systems only

14

Fuel Cells & Stirling Engines → Cost & Efficiency Gaps

15

Workshop Objectives

- Identify major end-use requirements in the small-scale (5-10kwe, 200-500kwe) distributed generation market segments – residential & commercial
- Identify most-challenging technical barriers to very high efficiency, low-cost gensets
- Identify promising new R&D paths to meet identified challenges
 - Prime-mover(s) innovations
 - Control computer, sensors, software
 - Advanced materials, small-scale multiphysics effects
 - Simulations: material, components, process, system
- Develop realistic, quantifiable metrics to evaluate progress and deliverables

Internal Combustion Engine efficiency gap breakdown and possible R&D areas

Combustion*

- Emerging methods:
 - HCCI: Homogeneous charge compression ignition
 - RCCI: Reactivity controlled compression ignition
- Synergy with new designs and materials
- Focus of DOE VTP program

Engine design*

- Utilize higher efficiency thermodynamic cycles
- Stationary let automotive R&D lead – novel but unproven architectures
 - Free piston
 - Compact design
 - Split-cycle

for a 200kW diesel engine** [3] Other Irreversibilities Combustion Work [21%] [39%] Friction **Availability** [4%] Heat transfer Exhaust Flow [13%] to walls [14%] d Research Projects Agency • Energy

Example 2nd Law Distribution

Materials*

- Enable high temperature and compression ratio
- Enabler for new engine designs
- Minor focus of DOE VTP program, but face different constraints (weight, size)
- Outreach: Materials to investigate not well defined

**Note: distribution for mini-engines differs

Work will be smaller fraction

Heat loss and friction will be larger fractions

Microturbine efficiency gap breakdown and possible R&D areas

Microturbine efficiency analysis

- Community recognizes certain key aspects that control efficiency:
 - Compressor pressure ratio
 - Inlet temperature
- Note that no U.S. commercial MTs <30kW
 - Tip losses
 - Compressor/ turbocharger fabrication and tolerances

Advanced MT designs*

• High temperature recuperator enables low compressor pressure ratios

Materials and coatings*

- Enable high temperature
- Component scale
 Turbine, Recuperators
 Compressor
- Outreach: Materials to investigate not well defined beyond "ceramics".

Fabrication

Small scale compressor tolerances

- Advanced manufacturing for small scale blades
- Sealing to eliminate spacing that leads to tip losses

Stirling engine gap breakdown and possible R&D areas

Stirling engine cost

- Engine head is the biggest cost item (about 50%)
 Exotic materials
 - Exotic liquid metal working fluids
 - Double containment
- 50% in BOS system heat exchanger, alternator and other components
- Most engines on the market are prototypes with no manufacturing base to support production

Stirling engine efficiency

- If focused on efficiency, largest opportunity is in heat exchanger design
- Note: Claimed efficiencies >20% have been challenged for small-scale stirling engine

Materials and working medium

- Enable higher temperature operation
- Advanced liquid metal working fluids

Fabrication

- Allow streamline manufacturing
- Build lower cost alternators
- Improve reliability

Novel engine designs*

- Advanced heat exchanger designs
- Enable higher efficiencies >40%

Fuel cell cost gap breakdown and possible R&D areas

10:00-10:10	Summary & Charge
	Dave Shum, ARPA-E
10:10 -10:25	Break
10:25 - 12:25	Breakout 1: "Product Specs" in 6-10 years and Beyond

- The application space
 - Single-family, apartment, neighborhood, small commercial
 - Wide range in electric/heat ratio (1:4 to 1/2:1 to all-electric)
 - Enabling genset module in electricity-only or CHP/CCHP system
 - 24x7x365 high-efficiency genset providing full energy needs
 - 5-10kwe @ 40%+, 22,000 kwh/yr,
 - 200-500kwe @ 60%+; 1,000,000 kwh/hr
 - \$500-\$2000/kwe
 - Massively scalable & economical design
- Have we properly captured the key functional and cost metrics for this genset via the strawman?

Agenda : Day 1

- The application space
 - Single-family, apartment, neighborhood, small commercial
 - 24x7x365 high-efficiency genset providing full energy needs
 - 5-10kwe @ 40%+, 200-500kwe @ 60%+
- Key functional and cost metrics for this genset

3:20 - 4:30	Breakout 2: 3-year Must-Have Metrics
4:30	Dismissal
5:30 - 7:00	Informal Networking

- What subset of metrics must we deliver in 3 yrs time that would excite and continue to engage the private sector toward commercialization in 3-7 yrs?
- Given a typical ARPA-E project horizon (3 yrs, \$30MM), could we move the needle?

Agenda : Day 2

- Breakout 1: Product Specs in application space
- Breakout 2: 3-yr Must-Have Deliverables

9:05 - 11:05	Breakout 3: Technology-specific
11:05 - 11:15	Break

- What are the technology-specific challenges & opportunities to achieve the 3-yr must-have deliverables?
 - Internal combustion engine
 - Stirling engine
 - Microturbine
 - Fuel cell
 - Hybrid cycles

