

Report Back:

Community, Apartment, Small Commercial:

"Product Specs" in 3 years and beyond

June 2, 2011

<u>Category</u>	ARPA-E's proposed	Modifications
System rating	200-500 kWe	10 -1000 kW
Electrical efficiency	≥60%	> 55% for 50-200 kW Range
(@ ≥50% kW rating)		
Part-load efficiency	≥75% of max efficiency	>75%-90% at 50% load
Emissions	EPA, CARB tier??	EPA Tier 4 - CARB should be used
Cost	First cost: \$xxk installed, or \$1000/kW or	Aim for \$0.10/kWh. Installed cost 600-
	LCOE: \$0.15/kWh over 7 years	1500\$/kW
Payback	2 – 3 yrs	< 3 years
Unit volume @ price point	5,000	100-5000
Fuel type	NG, propane, biogas, fuel-flexible	Fuel flexible a bonus
Maintenance frequency	Once per year, maintenance <8 hr, \$xxx	Twice a year
Reliability	<1 unintentional outage per yr, <8 hrs	95%-99%
	99.91%	
Lifetime	>60,000 hrs before major overhaul or	Hard metric, prime mover needs
	replacement	> 44 000 hours. Some want longer.
Electrical output type	AC = 60Hz, 120v	208, 480 V as well
AC/DC, frequency	DC option??	
and more		Noise, 60 dB at 10 m
		Temperature -40 F to 125 F
		Turndown Ratio > 3

- 1. A typical ARPA-E award is unlikely to be sufficient enough to build a 200 500 kW prototype
- 2. No technology agnostic 3 year metrics exist that will ensure reaching the 6-10 year metrics

Other Takeaways

- Specific sub challenges that could be solicited for seedling projects
 - New materials enabling higher temperatures.
 - Better coatings.
 - Higher strength alloys.
 - Different engine cycles.
 - Isothermal or isoenthropic compression for high efficiency ICEs
- Fast ramping is valuable for grid connected units.
- Cost assumptions should be provided to performers from ARPA-E to ensure an apples to apples comparison.
- There is an important distinction between modular and non-modular technologies – it is much easier to see how modular technologies (like fuel cells) will scale and thus easier to see how the costs will evolve.

Two pathways for measuring progress during a 3 year program:

- 1. Technology specific metrics (Fuel cells, ICEs, microturbines, Stirling)
 - 1. Each area has their own specific current state of the art metrics
 - 2. Shared 6-10 year LCOE target (with efficiency, capex, opex inputs)
 - 3. Develop area-specific 3 year targets to enable the 6-10 year LCOE target
 - 4. These would be teased out during the breakout sessions on workshop day 2.
- Open model performers provide: 2.
 - The 6-10 year metrics (capex, efficiency, etc) that combine to provide a 1. \$0.10/kWh product.
 - 2. A trajectory of what they will accomplish from year 0-6/10 to achieve the metrics at the end.
 - 3. What measurable results they will achieve within 3 years that will confirm their trajectory
 - ~10 kW prototype that achieves efficiency or cost improvement in a novel, promising way
 - Significant improvement/ modification to a baseline model.

- 50 kW prototype is the right size to enable reliable properties when scaling up to 500 kW
- 52% efficiency
- Need a cost target for 3 years, but what? Halfway to \$1000 / kW?

- Demonstrate efficiencies from 50-55% at any scale
- Demonstrate proforma calculation with \$0.15 / kWh or better and TRL 3 as key input data
- Typical prototyping costs \$10-20k / kW
 - \$1M prototype → \$1M / (\$20k / kW) = 50 kW, maybe
 2x smaller because of far-outness

