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Extensive Natural Gas Reserves
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less demanding opportunity

Gas could be at zero or negative
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Flared Gas is an Immediate Need

* @Gas at negative value
e Require small Inexpensive GTL Units ENEﬁdY

FRC

| 1N 'JIII-III.‘.ﬁl 1

Gulf of Guinea

e ~25% of US needs is flared

e Current high Temperature, syngas technology too

@ T expensive and complex for these applications 9w B B 8
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Current technology to convert CH, to Liquids

o Selectivity of any new process
J 70% yield! must be >~80 — 90%!

O Mature technology!

(d Practiced at fuel scale!

O Uses only AIR as the co-reagent!

Natural

Gas

Air

THE

SCRIPPS

Synthesis Gas

|
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(CO/M,) o Meor
|

900°C '
I ~25%

~60%

Key to cost reduction
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is lower capital cost!

Fischer-Tropsch

MeOH

\4
> Fuels
> Power

» Chemicals, CO, H,
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Technology Needed

U.S. DEPARTMENT OF

Direct, Selective, ENERGY
Lower Temperature EFRC
Methane Oxidation
> Fuels
Natural
Gas 250 °C MeOH > Power
Air
>  Chemicals

CH, + % 0, > CH,OH

Goal: >50% reduction in cost

relative to existing technology
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The Challenge
ENERGY
Utilize catalyst to activate EFRC

(increase reactivity) of RH S—

Utilize catalyst to activate

(increase reactivity) of O,
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High Selectivity by Minimizing Product Oxidation

The Strategy capltallze on u.s. i‘:‘ OF
"Product protection strategy protection strategy reactivity of OH group ENERGY

THE
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Poor selectivity without “protection” since k, >k,
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gas 2 gas E 2 gas
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CcO

High selectivity with “protection” if K, >> 1 and k, >> k; <<k,

P group needs to be inexpensive,
stable and easily recycled
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Commercial Wacker Process for Partial Oxidation of Ethylene

-
Phenol
e
/\ Nitrogen
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EFRC

e,
’_V_\:I H,Ox Return .
- N » o,
Utlllze(':h'eap o’ :-. 00
and efficient S & '. ‘o
bubble reactors o 0.
o o.. > e,
o... LY ..O
ee e e,
°* o L .
2 g ; Utilize Wacker regeneration:
Cu(l) + Air = Cu(ll)
’ Hydrocarbon Ox Feed Airor O, &
Feed
- 2+

C,H, + Ox+ H,0 - CH,CHO + H,Ox H,0x +% 0, > Ox +H,0

T Homogeneous catalysis SCRIPPS
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¢@e Materials

RESEARCH

CENTEHR

INsTITUTE"



13

Wacker Process Design can be Utilized for Partial Oxidation of CH,

CH, +%0, > CH,OH

U.S. DEP NT OF

ENERGY

Separation > Product E F RC
Methane

N — ——> Nitrogen Selective Partial oxidation
Oxidation /

Lower capital and operating costs
Lower temperature

Inexpensive and

efficient bubble [~ " H,Oxreturn | —— . Gas/!.IqUId SyS'Fem
reactors . 0. No air separation
* .'f e Inherently safer
o . ... e & . - Easily scalable
Stable, ‘e Catalyst ‘e Regeneration
Selective .", remainsin e’
I ‘e solution ’ . :
= 4 4 Pd" is not effective
SJ_L New homogeneous
= CH:I Ox+H,0 Alr (molecular) catalyst design
Fee
CH, + Ox+ H,0 - CH;OH + H,Ox H,0x+% 0, = Ox +H,0
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Minimum Metrics for Measure Success

Key engineering guidelines

d >90% Product Selectivity

d >20% Methane conversion per pass

d Temperature >200°C but < 300°C

d Reactor volumetric productivity (STY) ~10° mol/cc.sec
 Inexpensive product separation

Key Catalyst Guidelines
0 TOF~1s
(J TON >103

Can molecular catalysts

meet these targets??

ScCRILIPP
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Metrics to Measure Success

Engineering Guidelines

O Avoid explosive mixtures

O >20% Methane conversion per pass

d >90% Product Selectivity <

d >20% Oxidant conversion per pass

d Non-corrosive materials for inexpensive reactor construction
M

M

M

Q

Facile product isolation

Pressure <500 psig

Temperature >200°C but < 300°C ~<«jmmmm

Reactor volumetric productivity (STY) ~10°® mol/cc.sec =[cat] x TOF =

Key Catalyst Guidelines

O TOF ~1st

d TON >103

d Catalyst concentration of 1 mM at TOF = 1 s! to be cost effective

O At 1:1 gas:liquid should generate 2M MeOH in ~1.5 hr

Tue SCRIPPS
8 o 0 £ 1% g Periana, J. Mol. Cat., 2004, 22, 7 - Energy
RESEARCH e?ﬂ Materials
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The Challenge

Utilize catalyst to activate

(increase reactivity) of RH S

Utilize catalyst to activate

(increase reactivity) of RH
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Basis for Focus on Molecular Catalysts

o ____ Emerging | !
U.S. DEPARTMENT OF
Gas-Liquid or Gas-Solid ENERGY
S Expensive \ EFRC

|
|
Unstable above 250°C I
|
|
|

Inexpensive Heat Transfer

Inexpensive Reactors

Very Selective

Fast below 250°C

Well Defined
Low Operating Costs

“Rational” Design

Full Molecular Model

Full synthetic Control

SCRIPPS
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Can Integrate Modern Tools to Reduce time to Market

u.s. DEPARTMENT OF

Quantum
Chemistry ENERGY
EFRC
e —
®
Molecular
Catalyst catalysts —' L
Design =le=
oH ?
CH4 : |
Mechanistic
studies
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Approaches to Catalyst Design

U.S. DEPARTMENT OF

ENERGY

CH, + % 0, CH,OH
EFRC

O, NOT “INVOLVED"” CH, NOT “INVOLVED”

L. MX L, MX

n-,
T
HX | i CH, | X
THx +X |
L,M-CH; [L,MO]*
 Activated
intermediate
THE SCRIPPS
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LMX Catalysts Identified by “Theoretical Chemistry
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Several Effective Electrophilic Catalysts Operate by Electrophilic CH Activation
ENERGY

Soft, Redox active electrophiles
EFRC

1

N N, .|C|

ptl
~ Tl

Hg(11)/H,S0, Il N Au(111)/H,Se0,

=

1*/H,50, || Pd(11)/H,S0,

Angew Chem. E
2004

Chem Commun g Science, 2003
2002

Science, 1993 Science, 1998

d STY ~ 107 mol/cc.sec
Cat
3 ~1M methanol CH, + H,SO, - > CH3;0H + H,O + S0,
1 >90% Selectivit T S
° Y Acid solvent is essential!!
d ~80% methane conversion
[ All Catalysts operate by CH Activation s
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Catalysts inhibited by Products in Strong Acid Solvents

100

Fuels?

Need second
2.5 generation

catalysts! Chemicals?

CATALYST RATE
Kx10% st

N

o

1.5
0.5
0
6 7 8 9 10 25
Tue Ho of DZSO4 solvent SCRIPPS
SCRIPPS Ie Energy
RESEARCH O?ﬂ Materials
INSTITUTE" CENTEHR



24

Process Economics Show that this is not applicable to Large Fields

Vent
> >
> >
Methanol
Natural Gas D
S>So>—»> 1<
H,SO, Nitrogen
@1 ¢ > >
H,0/s0,
& AN
‘_
Air
> >
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DA EFRC
[CH3OH, ] (L N *2
Sol || - HCI m1-55/,H\1.73
m 2+ I \Pt/——“\CH
N AN Cl 2% HNTSNT NG
TOF oc [RH]H, cHeor FIRL L)
L CHa
X =HSO,4 H,SO0,
HZO SO|:H2804
) +
7 ' -~ ¢ ' @
N\IN “““ ‘t “““ X x| NN .[Sol] NIN ---- - [Solf
MRS N= | CHg HﬁI\N/Pt\CH3 Xsol H?\? sy ~CH3
L L = o
CH Activation

1/2 0, H,0
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Current Proposed Reaction Mechanism

ENERGY
0SOzH | H
o) EFRC

Coordination is
Rate determining

H,SO, facilitates
coordination and
cleavage
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Several Possible Mechanisms: A, B, Cand D

. ENERGY
S EERC

X = CI', HO3SO" HNI o [
Original mechanism, A,

Is wrong. Reactions
proceeds by pathway D.

CHaX + HX

H,SO, + 2 HX
Kall kg

S0, + 2 H,0

A
HNIN,
NN
J
Ko
THE A SCRIPPS
S(.' RIPPS SOZ+2H20 HZSO4+2HX ? Energy
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New Catalyst Designs
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Approaches to Catalyst Design

U.S. DEPARTMENT OF

ENERGY
CH, + % 0, CH,OH
0O, NOT “INVOLVED” CH, NOT “INVOLVED”
L,MX L, VX
CH, : CH;0H CH,OH : %0,
HX %0, CH, X
| +HX + X |
L M-CH; [L MOJ*
intermediate . !
intermediate
Avoid free radicals
THeE SCcCRIPPS
SCRIPPS ?Energy
RESEARCH e”‘“ Materials

INsTITUTE® e CENTER



Ni-CoM-dependent Methanogenesis

HaChl H3C 3
fas7
HaC-I CoBSH CoBS™

HyC*SCoM H3C HSCoM

CoBS CoBSH
H3C‘SCOM

COBS COBS CoBS™
'SCOM e SCOM H::,CJ-I-—SCOM

U.S. DEPARTMENT OF

ENERGY
EFRC

SCRIPPS
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Strategles for the oxygenation of strong C-H
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,CH3 EFRC
H H\ r\°CH3
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NY I YN NY I YN

L L \ HO'CH3

lT N//IhM‘\\\\N

NY 1 YN
/CH3 o L

H. H HO® N

0 CHs / ,CHs
N N Nu | o N H H

L N Il WN ' N I aN

HZO e M 8 —_— " M a H3C'CH3
NY | YCH, NY |
L L
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HZO‘\ H. / HO-CH;
O
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Methane Activation by Rhodium Porphyrins

U.S. DEPARTMENT OF

H ENERGY
R——" N" |||\R 3 EFRC
—Rh—N=

— N—F R

R CH3

N X

/NRhuN

— N—F "R
R
PPhs*-CHs

g@Wayland B. JACS, 1990; DiMagno, S. G. J. Am. Chem. Soc. 2000; Han, Y. Z.; Sanford, Mu 5¢;r s
>Engla'nd M. D.; Groves, J. T. Chem. Comm. 2006, 549-551; Sanford, M.S.; Groves‘ﬁnergy

AT v Chemie 2004, 116, 598-600. oo D"Efﬂ'i'i




Several Effective Electrophilic Catalysts Operate by Electrophilic CH Activation

’ Applicable to flared gas? ENERGY

1

N . Cl

N
Pt
~ Tl

Pd(11)/H,SO0,

Au(l11)/H,Se0,

Hg(11)/H,S0, [l N

=

1/H,SO0,

Science, 2003

Angew Chem. E
2004

Chem Commun
2002

Science, 1993 Science, 1998

d STY ~ 107 mol/cc.sec
Cat
3 ~1M methanol CH, + H,SO, - >  CH30H + H,O + S0,
O >90% Selectivity
d ~80% methane conversion
(1 All catalysts operate by CH Activation e
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Summary and Future Directions

a

a

Tue

U.S. DEPARTMENT OF

Molecular catalysts that operate in solution at lower temperature by CH activation has {ENERGY
shown to be effective and potential practical for conversion of methane to methanol EFRC

High selectivity observed in these systems can be attributed to fast reaction at lower
temperatures and reaction without the involvement of free-radicals, and reversible
protection

Issues such as cost, stability, separations, etc. can be addressed through catalyst
modifications, changes in solvents, oxidants, etc.

A key basis for effectiveness of molecular catalysts is that detailed atomistic models can be
obtained that together with a wide variety of synthetic tools utilized to “rationally” design
improved catalysts.

An important focus is increasing catalyst rate by ~103

To speed up discovery, the iterative loop of synthesis, characterization, testing and study
must be accelerated

An important strategy to accelerating progress while minimizing risk is to leverage efforts
directed at the other small molecules, O, ,N,, CO, and H,0
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