Carbon Capture Technology

Strategies

ARPA-E Carbon Capture and Conversion Workshop
Howard Herzog
MIT
October 29, 2009

Howard Herzog / MIT Energy Initiative
Today’s Technology

- Amines, primarily Monoethanolamine (MEA)
- Invented in 1930
- Hundreds of processes in operation
 - Most industrial gas clean-up (natural gas, hydrogen, etc.)
- Experience on power plant exhaust about 20
 - Largest size about 1,000 tonnes per day (tpd)
 » 1,000 tpd equivalent to 50 MW coal-fired power plant
 - More experience on gas than coal

Howard Herzog / MIT Energy Initiative
CO₂ Capture at a Power Plant

Source: ABB Lummus
Poteau, OK – 200 tpd

Howard Herzog / MIT Energy Initiative
Challenges for Today’s Technology

- **Costs for GHG mitigation**
 - Starts at $60-65 per tonne CO₂ avoided (4¢/kWh) for coal
 - Add first mover costs
 - Add premium for retrofits

- **Large contributor to cost is parasitic energy load**
 - ~25% loss of output for a power plant capturing 90% of CO₂ in exhaust gas

- **Critical challenge for PCC** – reducing the parasitic energy load

Howard Herzog / MIT Energy Initiative
Improving CO$_2$ Capture Technology

- Two primary approaches
 - Improved PCC technology
 - Improved solvents
 - Improved process design
 - Change process to make capture easier
 - Oxy-combustion
 - Pre-combustion

Post-Combustion Capture is critical technology for:
(1) Existing coal-fired power plants
(2) Existing and new gas-fired power plants
Post-Combustion Capture Technology Options

- MEA
- Improved Amines
 - Mixed amines
 - Hindered amines
 - Additives (e.g., piperazine)
- Other solvents (e.g., ammonia)
- Adsorption or membranes
- Other options
 - Biomimetic approaches (e.g., carbonic anhydrase)
 - Microalgae
 - Cryogenics/ phase separation
- Structured and Responsive Materials
Structured and Responsive Materials

- Opportunities for advanced technologies
 - Greater reliance on entropic rather than enthalpic interactions
 - Minimization of large thermal swings for regeneration
 - Stimuli-responsive materials to modify separation environment
 - Use of non-thermal regeneration methods (e.g., electric swing)

Courtesy Alan Hatton
Examples of Structured and Responsive Materials

- **Adsorbents**
 - Metal-Organic Frameworks (MOFs)
 - Zeolitic Imidazolate Frameworks (ZIFs)
 - Functionalized Fibrous Matrices
 - Poly(Ionic Liquids)

- **Absorbents**
 - CO$_2$ Hydrates
 - Ionic Liquids
 - Liquid Crystals

Courtesy Alan Hatton
Oxy-combustion 30 MWth Pilot Plant

Howard Herzog / MIT Energy Initiative
Oxygen Production

• Today
 ▪ Cryogenic Air Separation Unit (ASU)
 ▪ Largest size – 4,000 tpd

• Improved ASUs
 ▪ Oxygen purity (95-97%)
 ▪ Pressure (1.3-1.7 bar)
 ▪ Low power
 ▪ Large scale

• Ionic Transport Membranes
 ▪ Current scale = 5 tpd
 ▪ Stand-alone (heat and temperature recovery)
 ▪ Integrate in process (reduce \(\text{O}_2 \) partial pressure on permeate side)
Oxy-Boilers

- **Synthetic Air**
 - Requires flue gas recycle
 - First tested in mid-1980s
 - No changes to water/steam system
 - Minimum changes to boiler
 - Air enleakage an issue for retrofits

- **Oxy-Burners**
 - Used in glass, metals, cement, waste treatment

- **Oxy-boilers**
 - Eliminate external recycle
 - Higher efficiency
 - Pressurized operation?
CO₂ Purification

- **Flue Gas**
 - 60-70% CO₂ (Air enleakage biggest unknown)
 - Particulate matter must be removed
 - Non-condensibles and water removed during compression

- **Criteria pollutant control**
 - Co-sequester
 - Modify current equipment
 - Remove during compression as acids

- **High recovery, high purity systems**
 - Distillation
 - Membranes
RD&D Pipeline for a 8-10 Year RD&D PCC Program

<table>
<thead>
<tr>
<th>Stage</th>
<th>Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploratory (~$1 MM each)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Proof of Concept (~$10 MM each)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Pilot Plants (~$50 MM each)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Demonstrations (~$1,000 MM each)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Commercial Technologies

Howard Herzog / MIT Energy Initiative
Closing Thoughts

- Allow room for people to explore
- Avoid stove-piping
- Understand lifecycle considerations
- Create a transition from ARPA-E to other programs as technology advances
- Don’t forget fundamental principals
Obama visit to MIT
October 23, 2009

Howard Herzog / MIT Energy Initiative
Contact Information

Howard Herzog
Massachusetts Institute of Technology (MIT)
Energy Initiative
Room E19-370L
Cambridge, MA 02139
Phone: 617-253-0688
E-mail: hjherzog@mit.edu
Web Site: sequestration.mit.edu