Temperature Regulation for Li-ion Cells

Hsin Wang, Sreekanth Pannala, and Srikanth Allu
Oak Ridge National Laboratory
Oak Ridge, TN 37831

Keith Kepler
Farasis Energy
Hayward, CA 94545
Thermal Management Challenges in Large, Thick Cells

Thermal management of bigger and thicker cells, high capacity cells, at higher C-rates requires new design: Additional thermal tabs are used for heat transfer!

A 4.3 Ahr NMC Cell Equivalent to NMC 25 Ah Cells

6 mm 4.3 Ahr

13 mm 10 Ahr
Cooling from Pouch Surface is Very Ineffective!

Ice Block Cooling Through the Pouch

- Cooling from the surface is only effective few layers deep
- Confirms the need for alternative cooling
Side Cooling of a New Cell with Thermal Tabs Using a Water Chiller

- 9.5 Ah NMC cell with thermal tabs
- Cooling temperature can be changed 20-24°C
- Resolution: 0.1°C
- For demonstration only and the designs can be further refined

Modeling Results
Side Cooling Results: Experiment and Modeling

2.5C Experiment

5C Discharge Modeling

- Experiments have additional resistance due to uneven contact that is not included in the simulations
- Idealized boundary conditions can be achieved through engineering and thus improved cooling
Future Work and Test Matrix

2014 Plan:
- High C-rate cooling tests
- Cycling comparison:
 a. Baseline cell
 b. Thick cell (no cooling)
 c. Thick cell (surface cool)
 d. Thick cell (side cool)
- Modeling work:
 1. Form factors
 2. Various cell design
 3. Cooling options
- Technology-to-market

Benefits:
Side cooling should improve lifetime/safety in current designs and allow for a new generation of bigger cells with acceptable thermal behavior.

Test Matrix

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Protocol</th>
<th>Cell Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin</td>
<td>1-Cycle (1C to 5C discharge)</td>
<td>A</td>
</tr>
<tr>
<td>Thick</td>
<td>1-Cycle (1C to 5C discharge)</td>
<td>B</td>
</tr>
<tr>
<td>Thick with side cooling</td>
<td>1-Cycle (1C to 5C discharge)</td>
<td>C</td>
</tr>
<tr>
<td>Thin with no cooling</td>
<td>Cycling (1C charge, 5C discharge till 80%)</td>
<td>A</td>
</tr>
<tr>
<td>Thick with no cooling</td>
<td>Cycling (1C charge, 5C discharge till 80%)</td>
<td>B</td>
</tr>
<tr>
<td>Thick with standard surface cooling</td>
<td>Cycling (1C charge, 5C discharge till 80%)</td>
<td>B</td>
</tr>
<tr>
<td>Thick with side cooling</td>
<td>Cycling (1C charge, 5C discharge till 80%)</td>
<td>C</td>
</tr>
</tbody>
</table>

Three Types of Cells:

A. Thin cells: Thin
B. Thick cells: Thick
C. Thick cells with side-cooling layers: Thick with Side-cooling