# CO<sub>2</sub> Removal using a Synthetic Analogue of Carbonic Anhydrase

#### Harry Cordatos United Technologies Research Center



COLUMBIA UNIVERSITY



A United Technologies Company







# CO<sub>2</sub> Capture with Enzyme Synthetic Analogue







### Carbonic Anhydrase: Nature's Solution

What we can learn from the enzyme: reactive, coordinated ZnOH site

Active site's fast, reversible interaction with CO<sub>2</sub>





### **Proposed Approach: Membrane-based Separation**



CO<sub>2</sub> transport facilitated by carriers mimicking enzyme active site



- ~30% lower CO<sub>2</sub> capture cost compared to liquid amines
- ~2 billion tons/yr CO<sub>2</sub> from existing coal-fired power plants
- Modular, skid-mounted configurations; no moving parts
- Flexibility to start with smaller system, gradually increase to 90% CO<sub>2</sub> capture



# Q1 Milestone: Separation System Simulation



Accomplishment

#### Q1 Milestone (3/31/2010):

A membrane-based separation system simulation model in Aspen HYSYS<sup>®</sup> will have been completed and audited by WorleyParsons for independent assurance that plant interface conditions have been captured appropriately; and system sensitivity to membrane selectivity and permeance will have been mapped.



### Q2 Milestone: Atomistic Modeling



#### Accomplishment

#### <u>Q2 Milestone (6/30/2010):</u>

Atomistic level model of synthetic analogue in DMol<sup>3</sup><sup>®</sup> will have been completed and its ability to predict the bicarbonate derivative identified by NMR will have been demonstrated.

- Calculated structure predicts bond lengths & angles observed experimentally (XRD)
- Similar IR bicarbonate peaks observed in simulations and experiments
- Reasonable comparison between experimental and calculated analogue NMR

|      |       | •      |            |         |              |
|------|-------|--------|------------|---------|--------------|
| 11.1 | Atom  | Vacuum | Chloroform | Benzene | Experimental |
|      | H1    | -1.0   | -0.7       | -0.8    | -0.3         |
|      | H2    | 4.8    | 4.8        | 4.8     | *            |
| · 🗖  | H(C2) | 5.8    | 6.0        | 5.9     | 5.7          |
|      | H(C4) | 2.5    | 2.6        | 2.6     | 2.1          |
|      | H(C6) | 1.5    | 1.4        | 1.5     | 1.6          |
|      |       |        |            |         |              |





COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

### **Insight from Atomistic Model**

#### DMol<sup>3</sup> predicts low $E_A$ in the presence of water – similar to carbonic anhydrase



| Explicit Molecule | <b>Dielectric Solvent</b> | E <sub>A</sub> (kcal/mol) | ∆H <sub>rxn</sub> (kcal/mol) |
|-------------------|---------------------------|---------------------------|------------------------------|
| None              | None                      | 24.8                      | -7.0                         |
| None              | Water                     | 22.4                      | -8.5                         |
| None              | Benzene                   | 24.0                      | -4.1                         |
| Water             | None                      | -0.2                      | -8.0                         |
| Water             | Water                     | 1.1                       | -8.2                         |

- Significant change in reactive barrier with the participation of water molecules
- Small amounts of water in benzene/chloroform may provide sufficient catalysis effects
- Synthetic analogue predicted to mimic CA in aqueous environment (currently not our approach)



# Next Steps: Test Resistance to Flue Gas Contaminants

Demonstrate no unrecoverable analogue poisoning (go/no go milestone)

