SR INTERNATIONAL

CO₂ Binding Organic Liquids for Post Combustion CO₂ Capture

Marty Lail, Luke Coleman, Steven Reynolds, and Aqil Jamal Center for Energy Technology, RTI International, Research Triangle Park, NC 27709, USA

Project Objectives

Develop novel non-aqueous CO₂ scrubbing solvents and capture process that could substantially reduce the parasitic energy load and corresponding increase in cost of electricity (COE) for post-combustion CO₂ capture

Performance Targets

- Power Performance:
- Reboiler Duty < 2.0 GJ/tonne CO₂
- Plant Efficiency Point Loss < 7 points
- Economic Indicators:
- % Increase in COE < 50%
- Cost of CO₂ Avoided < \$45/tonne CO₂

Approach

- Non-aqueous, organic-based solvent systems Desirable physical and chemical properties to lower reboiler duty
- Alternative reaction pathways to conventional carbamate and bicarbonate chemistry

Primary and secondary amines: Carbamate formation

$$HO \bigvee_{H} H \xrightarrow{O=C=O} HO \bigvee_{H} O^{-} H^{+}_{H} OH$$

Regeneration Temp. = 120°C Absorption Rate $\approx 10,000 \text{ s}^{-1}$ (Flue gas Conditions)

Tertiary hindered amines: Bicarbonate formation

Experimental Results (cont'd)

Selective Alkylcarbonate Formation in the Presence of Water

Absorption: Temperature: 30°C Flue Gas Composition: 14%CO₂, ~3 % H₂O 4% O₂, 50 ppm SO₂ Balance N₂

Regeneration: Temperature: Ramp to 80°C Gas Composition: N₂ Purge

Background

Aqueous-amine Solvent Systems:

Only commercially-available capture technology

Monoethanolamine (MEA)

Hindered Amines

- High degradation rates due to O_2 and SO_2 in flue gas
- Evaporative losses and wastewater treatment requirements

Cost and Energy Requirements of State-of-the-Art Amine Solvents

Alternative, non-aqueous reaction: Alkylcarbonate formation (CO₂ Binding Organic Liquids (CO₂BOLs) originally proposed by Heldebrant et al.³)

$$^{+CO_2}$$
 $\xrightarrow{+CO_2}$ R_1 O Regeneration Temp. < 70°C
 $^{+CO_2}$ R_1 N_{-R_3} N_{-R_3} R_2 R_2 R_1 R_2 R_2 R_3 R_2 R_3 R_3

Technical Challenges for Existing CO₂BOLs Systems

- Chemical degradation by water
- Water reacts with many alkoxide bases producing the hydroxide anion
- CO₂ is absorbed as a bicarbonate salt requiring more energy for regeneration
- Physical accumulation of water from flue gas in solvent
- Flue gas from wet FGD is saturated (~15%) with water vapor
- Water can condense or be desiccated by non-aqueous solvents in the Absorber vessel under optimal absorption conditions until VLLE is established
- Viscosity of solvent should be low for optimal mass transfer of CO₂ from gas to liquid
- Solids formation in rich solvent
- Many solvents form insoluble solids at high CO₂ loadings
- Solids can accumulate in packing or other undesirable areas in the process
- Foaming
- Many aqueous and non-aqueous solvents foam when purged with gases
- Anti-foaming agents must be added to avoid entrainment

Experimental Results

Highly Automated Solvent Evaluation System

Cycle Number

Water accumulation is a major hurdle for non-aqueous systems

- Solvent systems with low water solubility form separate liquid phase
- Water balance can be maintained without distillation and offer low-energy separation options
- Regenerator can utilize low regeneration temperature

Robust CO₂BOLs are water tolerant

Lowering Power Load and ICOE

Solvent	C _p [J/g K]	∆h _{abs} [kJ/mol]	∆h _{vap} [kJ/mol]	X _{solv} [mol solvent/ mol solution]	Δα [mol CO ₂ / mol solvent]	Reboiler Heat Duty [GJ/tonne CO ₂]	
MEA (30%)	3.8	85	40	0.11	0.34	3.22	
Lower Energy Solvent System	2.0	30*	38	0.3*	0.6*	1.97	

*Experimentally measured data

Beneficial Characteristics of RTI's CO₂BOLs Challenges facing RTI's CO₂BOLs

- Lower specific heat capacity (C_P)
- Lower heat of absorption (Δh_{abs})
- Lower solvent vapor pressure at regen. T (p_i)
- Lower solvent dilution (Increasing x_{solv})
- Increased CO₂ working capacities ($\Delta \alpha$)
- Lower absorption T for optimal capture
- Water accumulation due to condensation or
- desiccation of water from flue gas
- Evaporative losses in Absorber
- Degradation by flue gas contaminants (O₂, SO₂) Cost of solvents

RTI's CO₂BOLs have the potential to reduce all COE contributors

Significantly lower energy penalty

Basis: 450 MW, Coal-fired Power Plant

Solvent	Parasitic Energy [%]	[\$/	Cost of CO ₂ [\$/ton CO ₂] [†]		
		Power	Capital	Operating	Removed
30 % MEA ¹	27	29	17	8	52
KS-1 ²	22	23	14.4	8.4	46

[†]Assumed \$80/MWh

Current Situation

- Current DOE post-combustion research target for *increase in COE* (ICOE) is 35%.
- Current state-of-the-art technologies are estimated to be **75-100%**.

Path to Reducing ICOE and Cost of CO₂ Avoided

- Aqueous systems have similar properties such as high heat capacities, heats of absorption and vaporization, and high dilutions
- Reboiler heat duties are similar and can only be *improved marginally* by

Preliminary Screening of RTI's Novel CO₂BOLs

Advantages

- - Proper selection of non-aqueous solvents can lead to a solvent system with superior physical and chemical properties compared to aqueous amine systems
 - Alkylcarbonates offer a lower energy alternative to conventional carbamate and bicarbonate chemistries
 - RTI's novel CO₂BOLs are stable in the presence of water

Lower Capital Costs

- Simple process configuration, similar to conventional processes
- Potential for process simplifications
- Potential for less expensive materials of
- construction
- Less prone to oxidation than conventional amines
 - SO₂ absorption is reversible

• Potential for reduced solvent make-up costs

Evaporative losses can be minimized

Lower Operating Costs

Technology Development Plan

Transitioning from novel solvent concept to commercial

	Previous Work			Curren	t Project	Future Development				
Yr	2009-10			2010-13		2014-15		2016-18	2019+	
TRL	1	2	3	4	5	6	7	8	9	
Proof of Concept/Feasibility					Prototype Testing at Power Plant					
Laboratory Validation					Rel	Relevant Environment Validation				
 Comprehensive solvent screening Identify solvent systems that exhibit: Working capacity > 0.4 mol CO₂/mol sol Regeneration temperature < 120°C Heat of reaction < 80 kJ/mol CO₂ Minimal solvent degradation Determine thermodynamic and physio-chemical properties for novel systems CO₂ capture process modeling Develop comprehensive process model Evaluate novel process configurations and integration schemes Compare performance with conventional solvent systems 				 Bend perfo Con ope Lor tesi Col sim CO₂ Upo Teo Prelin for a 	 Bench-scale testing to assess solvent performance Continuous flow, 10 kg/day CO₂ capture unit operated using simulated flue gas Long term (1,000 hours) performance stability testing with high-fidelity flue gas Collect process and scale-up data to support simulation and pilot-scale unit design efforts CO₂ capture process modeling Update process models Techno-economic analysis Preliminary engineering design package 					

Acknowledgements:

- **RTI Team:**
 - Raghubir Gupta, Markus Lesemann, Joshua Herr, Kelly Amato, Chris Boggs, Wes Yellin

lower heats of absorption or increase in concentration of amine.

References

. Rochelle, G. T. (2009). "Amine Scrubbing for CO₂ Capture." *Science* **2009**, 325, 1652-1654 2. http://www.co2management.org/proceedings/Masaki_lijima.pdf 3. Heldebrant, D.J. et al. (2008). "Organic liquid CO2 capture agents with high gravimetric CO2 capacity." Energy Environ. Sci., 2008, 1, 487–493.

Funding: DOE/ARPA-E Grant #: DE-AR0000093

RTI International is a trade name of Research Triangle Institute.