CO₂ Capture with Ionic Liquids Involving Phase Change

Joan F. Brennecke. Edward J. Maginn, Mark J. McCready, Patrick Murphy and William F. Schneider, University of Notre Dame George Keller, MATRIC

OF ACTIVE

0208-1667

Technology Summary

SEI

A new concept for CO_2 capture that uses *phase change ionic liquids (PCILs)* offers the potential to significantly reduce parasitic energy losses incurred from capturing CO_2 from flue gas. PCILs are solid ionic materials that have high CO_2 uptake (one mole of CO_2 for every mole of salt at post-combustion flue gas conditions) and form a liquid when they react with CO_2 . This allows for a novel process that uses the heat of fusion to provide part of the heat needed to release CO_2 from the absorbent, reducing the total energy required. This project will (1) develop and characterize PCILs; (2) evaluate energy savings in a new CO_2 capture process; and (3) demonstrate the technology at laboratory scale.

Goal: develop ionic salts that undergo a phase change (from solid to liquid) when they react with CO_2 ; taking advantage of the enthalpy change when PCILs react with CO_2 to enable capture of 90% of the CO_2 from post-combustion flue gas with less than a 35% increase in the cost of electricity.

In a 500 MW (471 MW de-rated) coal plant:

- •Aqueous amine scrubbing incurs parasitic energy losses of 28% (132 MW).
- •Current ionic liquids could reduce this to 23% (110 MW)

Progress to Date

Synthesized five Gen1 PCILs

process

- Measured CO₂ uptake of two Gen1 PCILs and began measurements of other compounds
- Developed forcefields for Gen1 PCILs and initiated molecular simulations
- Initiated measurements of heats of reaction and construction of packed bed absorption column
- Initiated process modeling

University of Notre Dame Team

