Advanced Grid Control through Grid connected Inverters and other High Speed Power Electronics

Dr. Leo Casey, EVP & CTO, Satcon Technology
Leo.casey@satcon.com

ARPA-E GENI Workshop
December 13th 2010
Faster, Smarter, Controllable, Greener, Distributed, Grid

the Key is?
-Power Electronics-
Overview

Grid – backbone of 150 years of industrialization, BUT aging infrastructure, designed for electromechanical devices, increasing penetration of renewables, slow centralized controls, needs transformation

Vision – Faster, Smarter interfaces, coordinated local and central controls at different time scales

Overcoming Technical Obstacles – Controllable, Distributed, Renewables thru Electronics

Elecromechanics vs Electronics – Speed vs Overload capability, outlook positive for Electronics

Storage – The holy grail, but, how essential and on what time scales?

Costs, options, other electronic devices?
The US Grid

Eastern Interconnect-- “the World’s Biggest Machine”
925,000,000 hp - 2,000,000 sq mi -- 3600rpm
Electric Power – More Electric Future

- Dominant secondary source of energy
- Grid is a BEAUTIFUL thing
 - Instantaneous energy
 - ac
 - Rugged generators
 - Spinning “reserve”
 - Excess capacity (>15% is critical)
 SIZED FOR 20%+
 - Low Impedance
 - Fault clearance
 - Overload

- Beautiful, but
 - no significant energy storage
 - Supply must equal demand
 - generator power angle
 - minimal local control
 - Time constraints of protective devices

- Importance of storage (some storage)
 - Distribution (remoteness of generation and utilization)
 - Load leveling (excess capacity), energy arbitrage
 - Power Quality (4-5 9’s vs 5-6+ in EU)
 - Intermittent Renewables (WIND)

Electricity Infrastructure

<table>
<thead>
<tr>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission SCADA control points</td>
<td>12</td>
</tr>
<tr>
<td>FERC grid monitor/control</td>
<td></td>
</tr>
<tr>
<td>Network Reliability Coordinating Centers</td>
<td>20</td>
</tr>
<tr>
<td>Regional Transmission Control Centers</td>
<td>130</td>
</tr>
<tr>
<td>Utility control centers</td>
<td>>300</td>
</tr>
<tr>
<td>Power plants</td>
<td>10,500</td>
</tr>
<tr>
<td>Large (>500 MW)</td>
<td>500</td>
</tr>
<tr>
<td>Small (<500 MW)</td>
<td>10,000</td>
</tr>
<tr>
<td>Transmission Lines</td>
<td>680,000 miles</td>
</tr>
<tr>
<td>Transmission substations</td>
<td>7,000</td>
</tr>
<tr>
<td>Local distribution lines</td>
<td>2.5 million miles</td>
</tr>
<tr>
<td>Local distribution substations</td>
<td>100,000</td>
</tr>
</tbody>
</table>

U.S. Transmission Capacity Normalized by Summer Peak Demand

- Data Unavailable
- Growth
- Decline
- Projected Decline

Map

- Major transmission lines are identified in NERC reports, TEI Ring Line, PJM, studies, press accounts, and internal energy reports.
Modern Grid Issues

• An age of Increasing Electrification (~1TW capacity in EI),
 – BUT
 • Energy sources problematic (climate, security!)
 • Grid Power Quality is inadequate to electronic age (many aspects to this)
 • Slow and Archaic Electromechanical Hardware & Controls
 • Congestion in T&D infrastructure
 • NIMBY etc
 – SOME ANSWERS
 • Demand Response (time scale?)
 • Efficiencies
 • Renewables
 • Hi-Speed Controls
 • Hi-Speed Devices
 • Reconfiguration
 • DC transmission
 – TO SOME PROBLEMS
Modern Grid Issues

Utility Concerns About The Impact Of High Penetration DG on MV Feeders

• Fluctuating real power output from renewable sources
 – Increased switching operations for line regulators, tap changers, capacitors
 – Flicker due to fluctuating voltage
 – Transient voltage on sudden trip of DG station

• Effect of new generation and reversible power flow
 – Protective relay settings and operation
 – Conductor and equipment loading
 – Islanding of DG with residual load connected
 – Auto-reclosing feeder breaker onto energized DG
Generation Connected thru Electronics can be Transformative – BUT different Paradigm

- Readily Controllable (remotely)
- Supply Real Power, P, Dynamically
- Reactive power, Q, (|P + jQ| < S_{INV}), Dynamically
- Active Damping (stabilizing)
- Controllable or Synthetic Inertia
- Fault Clearing
- Rapid Dynamics
- Unbalanced
- Non-linear sourcing
- Active Filtering
- Harmonic cancellation

- Also, high speed series devices would
 Limit faults and enable robust interactive microgrids
A Future Grid Vision

• Faster Protection & Control
 • More robust
 • More renewable
• More efficient
• More DC systems

• More Electronics
IN ALL LAYERS
• Higher PQ
• More µGrids
 • Improved CF
 • More distributed
 • Reconfigurable
 • Faster Recovery

Power Electronics are Grid Ready
One Game Changer

Back to Back DC links with **Mandatory**
Sub-second Area Balance

[Map showing interconnected regions with nodes and labels for Western Interconnection, Texas Interconnection, and Eastern Interconnection.]
1. Cost (30+% drop in Utility scale solar PV in last 18 months)
 - Panels
 - Inverters, BOS
 - O&M

2. Controllability

3. Intermittency (Variability/Capacity Factor/Capacity Value)

4. Utility Industry Acceptance/Adoption
 - Scale
 - Performance
 - Standards
 - Familiarity (interconnect studies, protection studies)
Increasing Penetration of Renewables - examples

Denmark
• 18% of Electrical Energy
• New Control Regs.
• European Grid
• Curtailment

New Zealand
• 80% + renewables
• Hydro, geothermal, wind

Lanai
• 20% PV in diesel grid
• No storage but heavily curtailed
• 30% of peak with storage (coming)
• Ramp rates, curtailment, remote control, site controller, VARs, ride-thru

Studies, NREL east and west, 10-30%, no storage, ramp Coal EU15, DisPower Study, 15-35%
Satcon Solstice Inverter Incorporates SEGIS Grid-Smart Control Features

SCADA

SITE CONTROLLER

Weather Station, etc

Remote Monitor

“Integrated Solution”

Grid

MV Switch Gear

MV Xfmr

Solstice Inverter

HMI

Com Board

Power Electronics

Combiner

Com

Board

DC Subcom

DC Subcom Board

External temp 1

Ambient temp

String Disconnect

PV String 1

PV String 12

DC-DC 1

GFI

Fuse

DC-DC 12

GFI

Fuse

MV Switch Gear

MV Xfmr

Grid

Sub-array
Low Voltage Ride Through

- Extended LV Ride-through
 - Ride-through more extensive voltage and frequency disturbances
 - Standard DER installations shut down when they are most needed – during voltage and frequency fluctuations
 - Shutting down generation such as DER inverters can make the disturbance worse
 - But ridethrough violates UL 1741 voltage and frequency limits, can violate anti-islanding rules
 - Fast DER inverter response can provide better support than other grid resources (tap changers, switched capacitors, load shedding, etc.)
 - European electricity associations such as BDEW, have already adopted extended ridethrough requirements
 - Grid voltages down to 0%, transients lasting up to 1.5 seconds
Illustration of Some Advanced Grid Support Control Features

- **Inductive 0.9 P.F.**
- **Capacitive 0.9 P.F.**
- **1.0 P.F.**
- **Power Curtailed**
- **Irradiance Fluctuation**
Satcon Solstice Two-Stage Architecture Facilitates Connection of DC Energy Storage

GRID-SMART INVERTER ALLOWS BI-DIRECTIONAL POWER FLOW

DC- connected energy storage can be controlled to reduce the variability of AC output power to the grid
Site Controller Provides Real And Reactive Power Management At the Point Of Common Coupling

PV GENERATION SITE NO. 1

PV GENERATION SITE NO. 2
Weapons against local effects of Intermittency

• Maintain real power with storage
• Forecasting
• Measurement coupled with ramping and regulation (auto)
• Ramp rates (ramp rate control using storage)
• Fast VARS
• Hybrid power plants
• Curtailment of renewable (or other)

Averaging
- in space
- in time
Works. Transmission connected renewables utilize this. But what of local effects? Voltage change due to sudden power change on distribution feeder

2009 U.S. Electricity Generation by Source

- Coal 44.9%
- Natural Gas 23.4%
- Nuclear 20.3%
- Hydroelectric Conventional 6.9%
- Other Renewables 3.6%
- Petroleum 1.0%
Real Power Output From PV Generating Station Fluctuates Due To Passing Cloud Cover
PV Inverter Simulation Shows Fast VAR Step Response Capability And The Effect On Local Bus Voltage

- Feeder X = 0.1 p.u. on inverter base

- AC voltage variation +/- 5% approx.

- Real power output = 0.8 p.u.

- Reactive power output = 0 p.u.

- Reactive power output = 0.5 p.u.

- Reactive power output = -0.5 p.u.
Illustration Of Automatic Voltage Control On a Long 13.8 kV, 10 MVA Feeder With 5 MVA PV Plant Connected

- No tap changers, line regulators, or capacitors
- Balanced feeder, balanced three-phase loads
- 9 buses - 7.5 MVA 0.95 p.f. constant power loads
- PV plant output, $P = 4 \text{ MW}$
Flicker Assessed From Transient Simulation Data

- Short term flicker assessed from simulated voltage at Bus #7
- Post-processed through IEC Flickermeter
- Event repeated continuously for ten minutes

No Voltage Control
$P_{st} = 3.6492$
(>0.9 - unacceptable)

Fast Voltage Control
$P_{st} = 0.3833$
(<0.9 - acceptable)
Larger Power Plants (20MW → 150MW and → 500MW distributed)
- single plants, T & D
- distributed, D
- Perceived barriers at penetrations >15%
- voltage regulation, protection coordination, cloud and load variability
- Circuit ratings
- Trip, transfer trip, islanding

- Utility Assets, efficient, available, long life
Example

- Fault studies limit DG penetration due to Recloser overload in substation with shared MV bus.
- Very big deal in some places today
- BUT, fault current is reactive as is traditional DG fault current.
- Inverter fault current?
- Much like inertia, what do you want it to be?
- Naturally the current is real, so orthogonal to fault current, but it could be capacitive if needed
Micro Grids

- Renewables plus back-up generation plus storage plus SDS
- UPS quality power
Need for Speed

8-14-03
Eastern Interconnection Frequency

Apparent & Approximate Envelope of the Undamped Oscillation, before System Reconfiguration (Islands) Led to a Damped Oscillation

Note:
Frequency of the Oscillation is about 1/3 Hz. This is the “Frequency of the Frequency”

Effective Breakup of the EI into Islands (largely due to operation of Zone 3 distance relays)

Undamped Period

Damped Period
Summary

• Inverters can solve some challenging problems, including the local effects of intermittency
• In many cases (faults a good example) Inverters and other high speed devices are the solution not the problem
• These high speed grid devices can truly enable a Faster, Smarter, Controllable, Greener, Distributed Grid
• High speed devices? STS, SDS, FCL, Breakers, …
• Inverters as StatComs
• Shock Absorbers (disturbance mitigation), distributed?
• More DC, infrastructure, transmission, …
• Control, local-autonomous-high speed, slower regional/area, PMU for control (not forensics only)
• Costs?