ARPA-E Electrofuels Program Meeting & Workshop

Ramon Gonzalez Program Director ARPA-E

December 10, 2012 Houston, Texas

Original vision of the program focused on the opportunity to utilize renewable electrons to power Electrofuels production...

Strategic vision has evolved as the program has matured and new insights have come to light

Originally vision of CO₂ sourced from coal/NG electricity production

- Systems level analysis suggests this is an inefficient way to GTL/CTL
- Also not likely to qualify as a biofuel

Electricity & CO₂

- 1. Biofuels production releases up to 1/3 of total carbon feedstock as CO₂
 - e.g. Sugar-to-fuel fermentation releases 2/6 carbon from every sugar molecule
 - Extremely pure and concentrated CO₂
 stream
- 2. CO₂ from geothermal could enable Iceland/Japan to become "oil" producers

H₂ & CO₂

- 1. GTL/XTL using Electrofuels to convert CO₂/H₂ into fuel
- 2. Opportunity to couple fuel and ammonia production in same reactor

Certain feedstocks are advantaged and more near term due to particular market opportunities

South African Company to Build U.S. Plant to Convert Gas to Liquid Fuels

By CLIFFORD KRAUSS

Published: December 3, 2012

ARPA-E conducted techno-economic analysis (TEA) to compare Electrofuels to other biofuel/fuel approaches

ARPA-E built a preliminary model to explore operating costs

Selected representative examples where a process could be envisioned

Built general models to explore the diversity of the program

Expanded and improved the model to assess capital costs

Added precision around cost of reducing equivalents

ARPA-E and NREL specifically addressed hydrogen, formate, and direct electrosynthesis in first iteration of the models

H₂ can be generated from H₂O with high efficiency

High costs associated with improvements in gas mass transfer

Formate: CO₂ + 2H⁺ + 2e⁻ → HCOOH → CO₂ + NADH + H⁺ → Calvin Benson

Formate is readily soluble and a source of energy and CO₂

CO₂ reduction to formate requires large overpotential and energetic cost

<u>Direct Current</u>: Direct current + CO₂ → Wood-Ljungdahl

High columbic efficiency to acetate

Low current density and high CapEx cost

TEA comparison of representative approaches using electricity as feedstock

- Apples-to-apples comparison using the same feedstock and producing the same final fuel molecule
- Compares the cost of assimilating electrons and fixing carbon dioxide to a final fuel

Despite TRL disparity, the target cases show similar cost of production, however feedstock dominate

Technologies are needed to reduce the cost burden of feedstocks and improve performance

What technologies are needed to take advantage of low cost feedstock?

Efficient use of Feedstocks

- Efficient carbon fixation pathways
- Fuel assimilation pathways with minimal ATP requirements

Access to Cheap Feedstocks

- Cheap capital that can be deployed with low capacity factors
- "Energy storage" by accumulating acetate or formate with intermittent electricity supply for later conversion to fuel
- Small, modular deployment

Relative cost savings of switching to a more efficient carbon fixation pathway

By addressing these, we can go after niche opportunities in early deployment scenarios

• H₂/CO/CO₂ energy source

- Ethanol refinery bolt-on
- Geographic niches with resource availability
 - TX = cheap wind e- & EOR CO₂
 - ND = natural gas processing with wind
 - Iceland & Japan = geothermal for e- and CO₂

Electricity as energy source

 Intermittent renewable electricity and opportunity for energy storage as formate/acetate

Challenges and opportunities identified in the RFI

- New materials and scalable reactor technologies to improve gas to liquids mass transfer
- Development of microbial systems capable of assimilating energy from multiple sources (e.g. H₂, CO, and HCOOH)
- Power/feedstock costs
- Real-time protein expression control systems
- In situ hydrogen generation
- Deployment opportunities targeting cheap feedstocks, resources, and permitting
- Reactor capable of operating as a dispatchable load

Challenges to be explored in the afternoon breakout session

H₂/CO/CO₂

- Fuel production rates of 10 g/L/hr
- Efficient carbon fixation pathway (e.g. not Calvin cycle)
- High gas transfer without high pressure reactor
- H₂ from CH₄, biomass, e⁻
- Scale to 10,000 BOE/d (150M gal/yr)

Challenges to be explored in the afternoon breakout session

Formate

- Current density of 200 mA/cm²
- Overpotential of 0.2V
- Selectivity of HCOOH::H₂ of 95%
- Fuel production rates of 10 g/L/hr
- Efficient carbon fixation pathway (e.g. not Calvin cycle)
- Electrochemical reactor at 1 bar
- Intermittent formate production, with continuous fuel production
- Formate accumulation of 25 g/L (production, toxicity)
- Scale to 1000 BOE/d (15M gal/yr; 70 MW)

Challenges to be explored in the afternoon breakout session

Direct Current

- Current density of 50 mA/cm²
- Overpotential of 0.2V
- Selectivity of e⁻::H₂ of 95%
- Fuel production rates of 2 g/L/hr
- Coulombic efficiency to fuel of 90%
- Intermittent electricity delivery
- Intermittent acetate production, with continuous fuel production
- Acetate accumulation of 60g/L (production, toxicity)
- Scale to 1000 BOE/d (15M gal/yr; 70 MW)

