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1. Sugar platform

e —
Starches (Corn) Sugarcane Straightforward
with yeast
Easy conversion -m

Sugars

Biomass deconstruction

still challenging Advanced

biofuels

Hydrolysates of plentiful

biomass-algae Requires Metabolic
Engineering
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2. Biofuel production by direct
photosynthesis

Metabolic Engineering;
Secretion?
Oil recovery

Just growth

Productivities are high

but cultures very dilute
Key challenge:

Cost-effective dewatering
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3. Biodiesel

: | : Biodiesel
L Oils ) . (FAME)

Simple trans-esterification reaction
Key issues: Feedstock cost and availability
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4. Bio-GTL

Clostridia
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Advanced
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Drivers for explosive growth of biotech
INn the 215t century:

 Push for Process Sustainability

 Technology advances

 Metabolic Engineering
 Engineering microbes for any
conversion at very high selectivity

 Opportunity for resource utilization
and rural development
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Key points

1 Modern era of Metabolic Engineering

J ME of the Future

1 Biological vs. Thermochemical
processes

1 Accelerating pathway engineering

1 Special issues with gas substrates:
Mass transfer but also product
stripping
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Cells: |

Little chemical N
factories with
thousands of

chemical compounds
Interconverted

through thousands of
chemical reactions |
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Engineering microbes to produce any
product
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Microorganisms
They are found
everywhere, from the
human gut to the hot
springs of Yellowstone
Park
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Metabolic Engineering, the biotech
revolution, and the chemical-fuels industry

(White Biotech)

e Fuels and chemicals were the Initial biotech target
= Cetus (Chiron), Genex, Biogen
e More challenging technical problem than insulin
= Switch of emphasis to medical applications
o Changing boundary conditions
" Emphasis on renewable resources
= Robust US federal funding = Applied mol. biology
= Genomics

= Systems Biology: a new mindframe in biological research
= Metabolic Engineering

e EXxploit applications of biology beyond medicine
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Key points

J ME of the Future

1 Biological vs. Thermochemical
processes

1 Accelerating pathway engineering

1 Special issues with gas substrates:
Mass transfer but also product
stripping
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Future Metabolic Engineering

e Unlimited synthetic pathways and non-natural
products

e Introduction of global metabolic controls to self
regulate (toxic) product accumulation (courtecy of
Synthetic Biology)

e Engineering or synthesizing de novo special
cellular compartments

e Use of scaffolds for enhancing local metabolite
concentrations-channeling

e Synthesis of novel enzymes and new chemistry
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Sophisticated pathway and
microbe engineering is required to
create biocatalysts for converting

sugars to advanced biofuels

Coupled with

Advanced bioprocessing
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Key points

d Biological vs. Thermochemical
processes

1 Accelerating pathway engineering

1 Special issues with gas substrates:
Mass transfer but also product
stripping
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Biochemical
VS.
Thermochemical
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Process Block Flow Diagram for FT ethanol
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Poplar -> Ethanol

Cellulosic Ethanol Process Flow Diagram
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Biochemical vs. thermochemical

« Thermochemical (via syn gas)
o Advantage: Feedstock agnostic
o Disadvantage: Requires large, integrated
plant to offset large capital costs

« Blochemical (mainly sugar platform)
o Advantage: Simple, linear process, high
selectivity, smaller plants
o Disadvantage: Depends on availability of
cheap sugars
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Key points

1 Accelerating pathway engineering

1 Special issues with gas substrates:
Mass transfer but also product
stripping

| === Bioinformatics and Metabolic ARPA-E Bio-GTL
I I" Engineering Laboratory G. Stephanopoulo December 5, 2012




Engineering Taxol biosynthetic pathway in E. coli

— most challenging and complex chemistry in natural products

Upstream pathway
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Fermentation of taxadiene producing strain
AP2T7TG
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Science, 330: 70-74 (2010)

e Taxadiene production: —1,700 mg/L
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Key points

 Special i1ssues with gas substrates:
Mass transfer but also product
stripping
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Carbon dioxide fixation with
CO/Hydrogen
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Electron production

Acetyl-CoA pathway

2CO, + 8¢ —~ CH,O,

hydrogenase

H, >~ 2H*+2¢e?l 4 moles needed

CODH
CO +H,0 > CO,+2H"+2¢l

If electrons from H,

2CO2 + 4H, — C2H402+2 H,O
If electrons from CO

4CO+2H,0 — C2H402+ 2 CO,
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Carbon utilization: Experiment 1
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Electrons utilized are calculated from experimental data and the maximum
available electrons from carbon monoxide transferred as determined from
mass transfer modeling

anlflen CO/CO2=7/3, 200 sccm pH 6

o CO/CO2=7/3, 100 sccm pH 6

s CO/H2/CO2=4/3/3 100 scem pH 6

s CO/H2/CO2=4/3/3, 100 scem, pH 7

ExpE (mole)

sllfes CO/CO2=7/3, 100 scem, no pI control

mme Blectron from CO, 30%. 100 scem

mee Flectron from CO, 70%, 100 sccm

mee Llectron from CO, 70%. 200 sccm
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Time (hr)
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Correlation between acetic acid productivity and
maximum mass transfer rate of carbon monoxide

R (g/L-hr)
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Correlation between acetic acid productivity and
maximum mass transfer rate of carbon monoxide

R (g/L-hr)
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IV. What is in the future?
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Future applications drivers

e New technology push:

<« Chemical synthesis of heterologous genes

< Increased appreciation of systemic
approaches to pathway engineering (mind-
frame of Systems Biology)

<+ Increased experimentation with pathway
construction harboring random DNA
combinations (Synthetic DNA)

+ Inverse Metabolic Engineering

«+ Development of High-Throughput screens
for chemicals production
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Future directions of ME-1

e Expand portfolio with numerous new applications:

<« Sustained interest in renewable resource utilization
<+ EXxpansion to the core of the chemical industry at
oil prices greater than $100/bbl (xylenes, terpenes,
Isoprene, butadiene,...)
< Best technology for specialty chemicals (specific
oxidations, acylations, amidations, stereo-
specific compounds, API’s, ...)
<« Tremendous diversity of new products

(isoprenoid pathway, glycosylated compounds)
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The end
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