Rare Earth Research Needs for Transportation Materials

Frederick E. Pinkerton
General Motors R&D Center
ADVANCED PROPULSION TECHNOLOGY STRATEGY

Improve Vehicle Fuel Economy and Emissions
Displace Petroleum

Hydrogen Fuel Cell-Electric Vehicles
Battery-Electric Vehicles (including EVre)
Hybrid-Electric Vehicles (including Plug-in HEV)
IC Engine and Transmission Improvements

Petroleum (Conventional and Alternative Sources)
Alternative Fuels (Ethanol, Biodiesel, CNG, LPG)
Electricity (Conv. and Alternative Sources)
Hydrogen

Time

Energy Diversity
ADVANCED PROPULSION TECHNOLOGY STRATEGY

Improve Vehicle Fuel Economy and Emissions
Displace Petroleum

Hydrogen Fuel Cell-Electric Vehicles
Battery-Electric Vehicles (including EV re)
Hybrid-Electric Vehicles (including Plug-in HEV)

IC Engine and Transmission Improvements

Petroleum (Conventional and Alternative Sources)
Alternative Fuels (Ethanol, Biodiesel, CNG, LPG)
Electricity (Conv. and Alternative Sources)
Hydrogen

Energy Diversity
ELECTRIFICATION STRATEGY

Portfolio of solutions for full range of vehicles that provide customer choice

Petroleum and Biofuels
(Conventional and Alternative Sources)

Electricity and Hydrogen
(Zero Emissions Energy Sources)

Mild Hybrid
Strong Hybrid
Plug-in Hybrid
Extended-Range Electric
Battery Electric
Fuel Cell Electric

Increasing Electrification
Electric Motor Development and Manufacture

GM is the first U.S.-based automaker to design, develop, process, and manufacture its own electric motors

Facilities
- Wixom, Pontiac, Indianapolis, Torrance – R&D and validation
- White Marsh, Maryland – high-volume manufacturing

GM is investing $270M in electric motors, electric drive, and components facilities

Design and manufacture electric motors in-house, and work with our best suppliers to provide the very best electrified vehicle solutions to our customers
Automotive requirements

- FreedomCAR targets for 2010, 2015 and 2020

- Difficult to achieve without high energy density RE permanent magnets
- Need maximum remanence B_r
- Need high temperature operation (> 150 C desired)
- Must not demagnetize at high temperature (i.e., Nd-Fe-B needs high H_{ci} at room temperature to have enough left at high T)

- And of course at low cost
The auto industry is dependent on rare earths for magnets

- Four elements – praseodymium, neodymium, dysprosium, terbium – are currently used for magnets in motors

- Rare earths account for ~80% of the material cost for a high coercivity Nd-Fe-B magnet (depending on magnet composition)

- Dy can be more than half of the rare earth cost

- Currently, the alternatives to rare earths in magnets are significantly inferior
Worldwide demand for RE magnets is expected to grow rapidly over the next few years

- All major OEMs will have the same rapidly increasing need for magnets
- Rare earth magnets have many applications in wind turbines and electronics, among other uses, and these demands are also expected to grow

Global Rare Earths Demand in 2010

- Catalysts: 22%
- Magnets: 24%
- Metal alloys, batteries: 21%
- Polishing: 15%
- Glass: 8%
- Phosphors: 6%
- Ceramics: 4%
 Tight market conditions led to rapidly rising RE prices over the last few years, even with the global recession

- Price for neodymium oxide has risen by 900% since 2005
- The price increase was larger outside China than inside, due to export controls

![Graph showing the increase in RE prices over time.](image-url)
The auto industry can tolerate expensive technology... *IF*

- Justified by performance
 - *Customer experience*
 - Regulatory requirements
- Cost is *stable* (predictable economics)
- Supply is *reliable* (non-strategic resource)
- Expected long-term trend toward lower cost
 - With increasing volume
 - With progressive technology improvements
The auto industry can tolerate expensive technology... *IF*

For Nd-Fe-B and Sm-Co:

- ✓ Justified by performance
 - *Customer experience*
 - Regulatory requirements
- ✗ Cost is *stable* (predictable economics)
- ✗ Supply is *reliable* (non-strategic resource)
- ✗ Expected long-term trend toward lower cost
 - With increasing volume
 - With progressive technology improvements

Nd-Fe-B and Sm-Co permanent magnet technology is mature
Mitigation

- Sourcing strategy
- Fall-back technologies (sacrifice performance for certainty)
- Motor design tradeoffs
 - Run at lower temperature, more cooling, etc.
- Reduce or eliminate Dy and other heavy rare earths
 - Dy replacements
- Reduce total rare earth content of Nd-Fe-B based magnets
 - Aligned exchange-coupled magnets with less RE
 - Hybrid magnets
- Disruptive technologies
 - New non-rare earth magnet materials
 - New motive technologies

Adapted from S. D. Bader, "Opportunities in Nanomagnetism" Rev. Mod. Phys. 78, 1 (2006)
Solutions will involve compromise...

We do not expect to equal or exceed Nd-Fe-B on all properties (the no-free-lunch theory)

Magnet property tradeoffs expected
No one solution for all applications

We will design to a material
Solutions will involve compromise…

We do not expect to equal or exceed Nd-Fe-B on all properties (the no-free-lunch theory)

Magnet property tradeoffs expected
No one solution for all applications

We will design to a material
... but we’ll take a cheap drop-in replacement for Nd-Fe-B.
Bottom line: automotive perspective

- High performance permanent magnets
 - Maximum B_r, high temperature performance, enough H_{ci} to not demagnetize, minimum cost
- The auto industry will be increasingly dependent on rare earth magnets as hybrid and electric vehicles grow market penetration
- Demand for RE magnets is growing rapidly for many uses, particularly wind turbine generators and vehicles, and demand is inelastic
- Supply of the heavy rare earths is limited and heavily concentrated in one geographical region, creating both business and political risks
- Tight market conditions led to sharp price increases over the last five years, with the Nd oxide price rising by 900% and Ce oxide rising by 3700%
- Rising demand and limited, inelastic, concentrated supply creates a high risk of a sustained RE price spike
- Mitigation should have high priority