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Outline

Electrical Energy Storage (EES) has large, and growing, market potential

Conventional batteries are ideal for short-to-moderate Energy/Power
ratios (e.g., < 1-h of discharge time at rated power output)

Many large-scale EES applications require higher E/P ratios
Flow-Cell technologies are well suited for these applications

Key benefits of Flow-Cell technologies for EES can include:
Both High Energy and High Power
Good round-trip energy efficiencies
Long cycle life
High utilization of active materials
Minimize non-active materials

Technology is proven, but not (yet) cost effective
Potential for future improvements is large
Minimal development effort to date (e.g., relative to fuel cells)
Fuel-cell technology is very applicable here
Multiple types of Flow-Cell Systems possible
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Electrical Energy Storage (EES)

Need is growing with increased Renewables, improved efficiency, Smart Grid, etc.

EES creates value in the

entire electricity value chain

Electricity generation
» Conventional
* Renewable

!

Electricity transmission
and distribution (T&D)

!

Electricity consumption
* Residential

« Commercial

* Industrial

Table from “Guide to estimating benefits and

market potential for electricity storage in New York
(w/ emphasis on NYC),” NYSERDA Final Report 07-

06, Mar 2007.
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Table ES.1. Storage Applications and Benefits Summary Descriptions
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EES applications have wide range of requirements
Large potential market (> $1B/y); EES is more efficient than alternatives

1000
s 5 - Many potential applications for EES
,““. S e e R --T&I]Facili‘tyl]eferral- Ly e o ] o o e e . .
_ Customer Eneray T Voiady s 1hr * Provides means to balqnce fluctuating
£ i consumption & generation, as well as meet
E Rdbaatich maximum power capacity requirements
E Re=ponsive
0 ! T « To store 1% of daily U.S. consumption
= requires 100 GWh/day (= $20B at
@ M . $200/kWh installed cost)
B ot i 12 » Largest EES markets are for applications
o that require E/P > 1-h and P > 100-kW
0.001 L
10 100 1 10 100
kw KW MW MW MW .
Storage Power Requirements for Electric Power Utility Applications System RatlngS
B e I Installed systems as of November 2008
« Not many multi-hour EES technologies ” a
» CAES and PSH are not readily deployable ~ °
« Difficult to deliver both high Power and high E |
Energy with conventional batteries j 01
« Conventional batteries (e.g., Li-ion, Ni-MH, 5 oo o e
Ni-Cd, L/A) ideally suited for E/P < 1-h apps 0001
0.0001 L
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EES Market Potential

Sandia report provides some estimates of multiple EES applications

Discharge Capacity Benefit Potential Economy %
Type of EES Application Duration (h) (Power: kW, MW) $kW)* (MW, 10 Years) ($Million) of U.S.
# Description Low High Low High Low High CA US. CA U.S. Market
11 Time-of-Use Energy Cost Management 4 6 1 kW IMW 1,226 1,226 5,038 64,228  $6,177  $78,743  34.5%
12 Demand Charge Management 5 11 5S0kW 10 MW 582 582 2519 32,111  §$1.466  $18,695  8.2%
15 Renewables Energy Time- Shift 3 5 1 kW 500 MW 233 389 2,889 36,834 $899  $11,455 5.0%
2 Electric Supply Capacity 4 6 I MW 500 MW 359 710 1,445 18,417 $772 $9,838  43%
8 Transmission Congestion Relief 3 6 1MW 100 MW 31 141 2,889 36,834 $248 $3,168 1.4%
9.1 T&D Upgrade Deferral 50th percentile 3 6 250kW SMW 481 687 386 4,986 $226 $2912 1.3%
9.2 T&D Upgrade Deferral 90th percentiletf 3 6 250kW 2 MW 759 1,079 77 997 $71 $916  0.4%
10 Substation Onsite Power 8 16 1.5kW S5kW 1,800 3,000 20 250 $47 $600  0.3%
16 Renewables Capacity Firming 2 4 1kW 500 MW 709 915 2,889 36,834  $2,346  $29,909 13.1%
3 Load Following 2 4 I MW 500 MW 600 1,000 2,889 36,834  $2,312  $29,467 12.9%
1 Electric Energy Time-shift 2 8 I MW 500 MW 400 700 1,445 18417 $795  $10,129  4.4%
17 Wind Generation Grid Integration, Long Duration 1 6 0.2kW 500 MW 100 782 1,445 18417 $637 $8,122 3.6%
5 Electric Supply Reserve Capacity 1 2 I MW 500 MW 57 225 636 5,986 $90 $844  0.4%
13 Electric Service Reliability 00833 1 02kW 10MW 359 978 722 9,209 $483 $6,154  2.7%
14 Electric Service Power Quality 0.0028 0.0167 0.2kW 10 MW 359 978 722 9,209 $483 $6,154  2.7%
6 Voltage Support 0.25 1 IMW 10 MW 400 400 722 9,209 $433 $5,525  2.4%
7 Transmission Support 0.0006 0.0014 10 MW 100 MW 192 192 1,084 13,813 $208 $2,646  1.2%
17 Wind Generation Grid Integration, Short Duration ~ 0.0028 0.25 02kW 500 MW 500 1,000 181 2,302 $135 $1,727 0.8%
4 Area Regulation 025 05 1MW 40MW 785 2,010 80 1,012 $112 $1,415  0.6%
Mon) $228,419  TO0%~_
*  Lifecycle, 10 years, 2.5% escalation, 10.0% discount rate. ( >3-h  duration  $126,327 55.3%

Based on potential (MW, 10 years) times average of low and high benefit ($/kW). Mhtermediate $78,471 34.4%

f
7T  Values are for one year. However, strorage could be used at more than one location, for similar benfits, during its life. |< 1-h  duration

From: “Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide ,” SANDIA Report2010-0815, Feb 2010.
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Conventional Batteries

Everything in a single “box”
Plug-and-play

Conventional battery is
A look inside the “box” reveals that: composed of multiple cells

Active reactants are stored in small, thin packages (i.e., cells)

Cell “packaging” is made of:
Electrodes, separators, and current collectors

These “packaging” materials are relatively expensive
Corrosion resistant
Typically ~ 72 the cost, volume, and weight of battery

Ideal for portable applications
Small amounts of energy
Very convenient package
Simple system
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Large-Scale EES

= We want to serve applications that
require large amounts of energy:

Need MWh, not mWh (10° factor) \f A =

= Fluid analogy:
Fluid = Energy
Need Gallons, not a few drops

Does not make sense to use
ounce-size packages

= |deally, need batteries that can store
large amounts of reactants

Economically
In drums, not small packages
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Conventional battery life-cycle costs are relatively high
Expected to remain so due to fundamental issues

= |ssues with conventional batteries:

Relatively short cycle life with deep
discharge/charge cycles

Electrodes undergo physiochemical changes
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Long Duration
Fly Wheels
Capacitors

Possible reduction due

Relatively low active-material-to-inactive-

material ratios (i.e., discharge times
typically < 1 h at rated power output)
Stored in small 2-D packages

High replacement costs (must replace
essentially entire system)

Lower round-trip efficiency with less
expensive chemistries

Power and energy are not independent

Electrochemical

CAES
+ gas

tolife extention by
pattial refurhishiment

-

Capital / Energy

Life (cycles) X Efficiency

Capital Cost per Cycle (g¢/kWh - output)

Pumped Hydro |

=]
-

Carrying charges, O&M and replacement costs are not included

Estimates of life-cycle costs for state-of-the-art EES
technologies (note this is capital cost only).
Source: Electricity Storage Association website

Note:

Cannot design a battery that can deliver both | - Flywheels and capacitors are short-discharge time devices

high power and high energy

Electrodes

Thick = High Energy
Thin = High Power
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» CAES and pumped hydro are geographically constrained

Leading battery technologies for grid-scale
applications with multiple-hour discharge
Flow batteries & liquid-electrode batteries
Extended discharge times
Lower inactive material per active material
Long cycle life, even with deep discharges



Flow Batteries are essentially rechargeable fuel-cell systems
Combine the best attributes of rechargeable batteries and fuel cells

Flow Battery System

lon
Power out Electrolyte

Cell stack membrane 5 flow Battery
attributes s ™ | o attributes

= Energy and power independent § ‘iSL',S‘JZSk § = Rechargeable

" Long lite cycle = PSP = High round-trip efficiencies

* Low self-discharge rates = No precious-metal catalysts

Reactant tanks
(energy)

Conventional battery constraints
= High power OR High energy

Fuel cell issues
(for energy storage)

= Low round-trip efficiencies
= Precious-metal catalysts - L=l 5= epets

- Hydrogen storage = Continuous self-discharge
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Flow Battery Systems (FBS) have been demonstrated in field

Technology is proven, but not cost effective
» Flow Battery concept originally developed by NASA in 1970s (Fe-Cr system)
» Multiple fielded FBS demonstrations have been done, especially with VRB (e.g., Sumitomo Electric in Japan)

» Generally, successful except for Capital Cost of the System

= Example of fielded prototype unit

= |nstalled by VRB Power Systems

= 500-kW / 2-MWh plant in Moab, Utah
= Ambient temperature range of -25 to 55+ C
= T&D upgrade deferral in sensitive site

= Hand-off in Mar. 2004; run unmanned thru 2009
= Availability > 96% over 5-yr period

= Experienced PCS card failure (lightening strike)

= Completed > 1600 cycles

However, technology has not received much attention in last ~ 30
years, since FBS is only suitable for large-scale EES applications,
and the cost targets for these applications are very challenging (i.e.,
lower than portable or even transportation)
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Multiple types of Flow-Cell Systems for EES

Technology platform will depend on App, but all use common technologies

Flow-Cell Technology Major attributes ' Major Issues (with Current Technology)
Complex (relative to conventional battery)

Low round-trip energy efficiencies (< 50%)

Reversible Fuel-Cell Energy and power independent Bi-functional oxygen electrode design (gas/liquid)

/Electrolyzer systems Long life cycle } i

(e.g., HyO,, Hy/Air) Low self-discharge rates Bi-functional oxygen electrocatalysts
Precious-metal catalysts (both electrodes)
Hydrogen storage (complex and/or costly)
Complex (relative to conventional battery)

Closed-Loop Reversible Fuel | Energy and power independent Relatively low round-trip efficiencies (< 60%)

Cell systems Long life cycle Precious-metal catalysts (both electrodes)

(e.g., Hy/Br,, Hy/Cly) Low self-discharge rates Vapor pressure of Br, or Cl,

Hydrogen storage(complex and/or costly)

High round-trip efficiencies (= 70%)

Redox Regenerative Fuel No precious-metal catalysts Complex (relative to conventional battery)
Cell (RRFC) systems Energy and power independent Low energy density (relative to batteries)
(e.g., Fe/Cr, V/V, S/Br,) Long life cycle Poor cell performance (relative to PEMFC)

Low self-discharge rates

Complex (relative to conventional battery)

Hybrid Fuel-Cell/Battery High round-trip efficiencies (> 70%) Power & energy not independent (Zn or Ni plating)
systems Low se]f_discharge rates Limited life cycle (Zn or Ni electrode)
(e.g., Zn/Bry, Zn/Cly, Ni/H,) Moderate energy densities Precious-metal catalysts(Br, Cl, or H, electrode)

Vapor pressure of Br, or Cl,; or Hydrogen storage
Complex (relative to conventional battery)

. . Only one reactant to store
Hybrid 2%/63907('/ Air systems Low self-discharge rates Bi-functional oxygen electrode design (gas/liquid)
(e.g., V777T/AIr) . Bi-functional oxygen electrocatalysts

Energy and power independent Precious-metal catalysts (O, electrode)

High round-trip efficiencies (> 70%) Complex (relative to conventional battery)

Hybrid H,/Redox systems Low self-discharge rates Low energy density (relative to batteries)
(e.g., H2/Fe2+/ 3 R Hz/V4+/ 5+) Moderate energy densities Some precious-metal catalysts (H, electrode)
Energy and power independent Hydrogen storage

» Both Hydrogen and Oxygen are good reactants for flow-cell systems
 Air is ideal reactant, from storage perspective, but relatively low round-trip efficiency

» Hydrogen offers high round-trip efficiency, but challenge is hydrogen storage

iy United Technologies
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Flow-Battery System Cost is Dominated by Stack

Major focus of UTRC’s ARPA-E project is to substantially reduce stack cost

= FBS has 3 major sub-systems:

Power module (Stack), $/kW

Custom reactor built from
custom components

Electrodes, separators, and
current collectors

Reactant storage, $/kWh

Redox couples dissolve in
aqueous solution

Plastic tanks

Balance of Plant (BOP), $/kW
Pumps + plastic plumbing
Controller
Power Electronics

= |f Stack cost can be reduced by a
factor of ~ 4X, then Flow-Battery
System cost can be cut in half

iy United Technologies
Research Center

Fe-Cr
PS-Br
| 0 6-h BOP
VRB B 6-h power
O 6-h store
0 20 40 60 80 100
Percentage of Cost (%)

Cell power density comparison (W/cm?)

Typical 1'10“"-1)3“.61”}' _ Ope rate at 50_ OO m sz
cell

UTRC flow-battervy
cell

o] 0.2 04 0.6 08 1 L2

* Cell performance results shown are for VRB cells
* Improvements obtained using conventional materials
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Cell Power Density

Increasing power density means further
decreasing non-active/active material ratio

Can do much better than \
conventional batteries (due to forced
convection)
S
Fluid Analogy
Power = Flow Rate
Conventional flow-battery stacks are
like atomizers
Deliver power at low rates
Many required to deliver significant (
flow of fluid e ——C
Many, or large, stacks required
We need Nozzles! S

. United Technologies —
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Summary
Flow-Battery Systems offer many advantages for large-scale EES apps

8

= Key Benefits:
Both High Energy and High Power
Good round-trip energy efficiencies
(~ 75-80%)
Long cycle life (> 10K)
High utilization of active materials
(~ 90%)
Minimize non_aCtive materials Number of papers appearing in peer-reviewed Electrochemical

(espeC|aIIy fOf' hlgh energy apps) Society publications that have the terms “flow battery,” “redox
battery,” or “redox fuel cell” in the title or abstract

45

o = 28] [=8] = w (=] ~J
| | | | |

1981 - 1985 1986 - 1990 1991- 1995 1996 - 2000 2001 - 2005 2006 - 2010

= Technology is proven, but not .
(yet) cost effective N
= Lots of future potential ’
Limited development over the past ' 11 I T
three decades AR AN
Fuel-cell developers well suited to 383388555558 88288883¢8¢88
transform FBS technology Papers

Figure 3. The number of papers appeanng in the Journal which include the
phrase “fuel cell” m the title.

M. Perry & T. Fuller, “A historical perspective of fuel-cell technology in the
l United Technologies 20t Century,” Journal of the Electrochemical Society, V149, S59 (2002).
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