Aqueous Processing of Advanced Reactor Used Fuel

ARPA-E Workshop on Reducing Disposal Impact from Advanced Reactor Fuel Cycles
Advanced Reactor Fuels

• Current LWR fuel is <5% enriched UO$_2$ pellets inside zircalloy tubing
 - Accident tolerant fuels may have slightly higher enrichment and used coated zircalloy or other cladding materials

• Proposed advanced reactors use different fuels
 - MOx ceramic fuel
 - Tristructural isotropic particle fuel (TRISO)
 • UO$_2$ or UCO fuel
 • In compacts or pebbles
 - Metallic fuel
 - Molten-salt fuel

• Many advanced reactor fuels utilize HALEU (uranium enriched up to 19.75%)

• Of these fuel types, MOx and TRISO are the most amenable to recycle by aqueous processing
Aqueous uranium recovery/recycle approaches

• There have been a number of technologies demonstrated for the recovery of uranium and/or plutonium
 – Solvent extraction, ion exchange/extraction chromatography, precipitation
 – Of these, solvent extraction has been used to recover fissile material from used fuel at an industrial-scale for more than 70 years
 • The most widely used method is the PUREX process (plutonium uranium reduction extraction)
 • Variations of the PUREX process have also been demonstrated (e.g., UREX to recovery only U not Pu)
 • Other solvent extraction processes have been developed that use different extractants than PUREX (e.g., monoamides)
Waste Products of PUREX process

• PUREX processing produces two primary waste streams
 − High-level waste
 • Liquid raffinate containing all fission products, inert metals, minor actinides (Np, Am, Cm)
 − This stream is converted to a stable waste form, such as glass or ceramic, for eventual geologic disposal
 • The fuel cladding is considered HLW in the US (Intermediate-level waste in most other countries)
 − Low-level waste
 • Any contaminated by-product of running the process or facility
 − Does not require disposal in geologic repository
 − Some LLWs are encased in cement, others directly disposed
 − Wastes from the capture and immobilization of volatile off-gas constituents (these wastes would be either HLW or LLW depending on their characteristics and regulations)
MOx fuel

- MOx fuel (mixed oxide) is a ceramic fuel containing both UO$_2$ and PuO$_2$
- Because of Pu isotopics, MOx fuel is typically only burned once in a thermal (LWR) reactor
 - LWR MO$_X$ typically has about 7-10% PuO$_2$ and the remainder UO$_2$
- Recycled Pu can be burned indefinitely in a fast reactor over several cycles
 - Fast reactor MO$_X$ can have as much as 30% PuO$_2$
- Processing MO$_X$ fuels is similar to processing LWR fuels with a few exceptions
 - The fuel is higher burnup and dissolving the fuel is more difficult
 - The extraction process has to be adjusted to account for the higher amounts of Pu
- ~70 MT of MOx fuel has been processed at the La Hague reprocessing facility in France
Processing Advanced Reactor Fuels

- **MOx Fuel** (for fast reactor recycle)
 - Challenges are dissolving high-burnup fuel and accommodating high Pu content
 - European approach (heterogeneous or homogeneous recycle)
 - GANEX (group actinide extraction for homogeneous recycle)
 - Two step process
 - Separate U using DEHiBA extractant
 - Separate Np, Pu, Am, and Cm using Euro-GANEX process
 - SANEX (selective actinide extraction for heterogeneous recycle)
 - Multiple approaches
 - Similar approaches internationally (e.g., ALSEP process in US)
Processing Advanced Reactor Fuels

• TRISO Fuel
 - It is challenging to destroy the outer coatings of TRISO particles to access the uranium
 - Historically, a grinding, burning, and leaching approach was developed, but burning the graphite releases C-14
 - Besides the carbon coating of the particles, there is a very large mass of contaminated graphite in the compacts, prisms, or pebbles that will require disposal
 - Methods that need developed are:
 • Separating TRISO particles from the graphite material
 • Accessing the uranium inside the TRISO particle
 - SRNL molten nitrate salt
 - Electrochemical method
 - Sonication
 - Others ?
Processing Advanced Reactor Fuels

• TRISO Fuel continued
 – Once the TRISO particle is breached, the fuel can easily be leached out and conventional solvent extraction processes employed
 – Graphite waste disposal and possible waste forms have not been addressed sufficiently
Research areas that could be potential game changers

- Headend processes
 - Advanced methods to remove cladding that would enable it to be disposed as LLW rather than HLW
 - For oxide fuels, this could be Zr or SS volatility
 - For TRISO fuel, separation of fuel particles from graphite
 - Advanced separation processes
 - Key is simplification for waste minimization
 - Can we go from 2 or 3 extraction cycles to 1 cycle and significantly reduce facility size and operational costs?
 - Advanced waste forms
 - Ceramic or glass ceramic waste forms have the potential to increase waste loading (reduce volume) and be more durable than borosilicate glass
 - Volatile off-gas capture and immobilization
 - Enabling technologies for all processing methods
Summary

• Advanced reactor fuels have differences from current LWR fuels that create new challenges
 – Headend processing to access fissile material
 – Waste management

• There are a number of research opportunities that could make significant advancements in aqueous processing and waste management that are currently not being addressed by any R&D program
 – NE program funding for material recovery has decreased for the past several years and is at or near unsustainable levels

• The development of advanced reactors without the development of their associated fuel cycles creates additional programmatic risk